Manifestation of critical effects in environmental parameter estimation using a quantum sensor under dynamical control
- URL: http://arxiv.org/abs/2504.08355v1
- Date: Fri, 11 Apr 2025 08:42:29 GMT
- Title: Manifestation of critical effects in environmental parameter estimation using a quantum sensor under dynamical control
- Authors: M. Cristina Rodriguez, Analia Zwick, Gonzalo A. Alvarez,
- Abstract summary: We investigate the emergence of critical behavior in the estimation of the environmental memory time $tau_c$.<n>Our findings pave the way for adaptive control strategies aimed at enhancing precision in quantum parameter estimation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum probes offer a powerful platform for exploring environmental dynamics, particularly through their sensitivity to decoherence processes. In this work, we investigate the emergence of critical behavior in the estimation of the environmental memory time $\tau_c$, modeled as an Ornstein-Uhlenbeck process characterized by a Lorentzian spectral density. Using dynamically controlled qubit-based sensors -- realized experimentally via solid-state Nuclear Magnetic Resonance (NMR) and supported by numerical simulations -- we implement tailored filter functions to interrogate the environmental noise spectrum and extract $\tau_c$ from its spectral width. Our results reveal a sharp transition in estimation performance between short-memory (SM) and long-memory (LM) regimes, reflected in a non-monotonic estimation error that resembles a phase transition. This behavior is accompanied by an avoided-crossing-like structure in the estimated parameter space, indicative of two competing solutions near the critical point. These features underscore the interplay between control, decoherence, and inference in open quantum systems. Beyond their fundamental significance, these critical phenomena offer a practical diagnostic tool for identifying dynamical regimes and optimizing quantum sensing protocols. By exploiting this criticality, our findings pave the way for adaptive control strategies aimed at enhancing precision in quantum parameter estimation -- particularly in complex or structured environments such as spin networks, diffusive media, and quantum materials.
Related papers
- Avoided-crossings, degeneracies and Berry phases in the spectrum of quantum noise through analytic Bloch-Messiah decomposition [49.1574468325115]
"analytic Bloch-Messiah decomposition" provides approach for characterizing dynamics of quantum optical systems.
We show that avoided crossings arise naturally when a single parameter is varied, leading to hypersensitivity of the singular vectors.
We highlight the possibility of programming the spectral response of photonic systems through the deliberate design of avoided crossings.
arXiv Detail & Related papers (2025-04-29T13:14:15Z) - Sensitivity Meets Sparsity: The Impact of Extremely Sparse Parameter Patterns on Theory-of-Mind of Large Language Models [55.46269953415811]
We identify ToM-sensitive parameters and show that perturbing as little as 0.001% of these parameters significantly degrades ToM performance.
Our results have implications for enhancing model alignment, mitigating biases, and improving AI systems designed for human interaction.
arXiv Detail & Related papers (2025-04-05T17:45:42Z) - Quantum metrology of a structured reservoir [0.0]
Accurately characterizing the properties of structured reservoirs is a key challenge in quantum systems.<n>We employ a two-level system (qubit) as a probe, which is coupled to a structured reservoir consisting of ancilla qubit and a Markovian environment modeled as a thermal bath.<n>We quantify the precision of parameter estimation using quantum Fisher information (QFI) and analyze the system dynamics in both transient and steady-state regimes.
arXiv Detail & Related papers (2025-03-20T15:56:28Z) - Spectral truncation of out-of-time-ordered correlators in dissipative system [44.99833362998488]
Out-of-time-ordered correlators (OTOCs) have emerged as powerful tools for diagnosing quantum chaos and information scrambling.<n>We investigate the spectral decomposition of OTOCs in open quantum systems using the dissipative modified kicked rotator (DMKR) as a paradigmatic model.<n>Our results provide a quantitative framework for understanding OTOCs in dissipative quantum systems and suggest new avenues for experimental exploration in open quantum platforms.
arXiv Detail & Related papers (2025-03-05T17:22:25Z) - Enhanced Quantum Parameter Estimation via Dynamical Modulation [3.93042397391066]
In quantum theory, the inescapable interaction between a system and its surroundings would lead to a loss of coherence and leakage of information into the environment.<n>We propose a general dynamical modulation scheme that enables the enhancement of estimation precision irrespective of the origin of the parameters to be estimated.
arXiv Detail & Related papers (2025-01-10T02:34:18Z) - Evaluating ML Robustness in GNSS Interference Classification, Characterization & Localization [42.14439854721613]
Jamming devices disrupt signals from the global navigation satellite system (GNSS)<n>This paper introduces an extensive dataset comprising snapshots obtained from a low-frequency antenna.<n>Our objective is to assess the resilience of machine learning (ML) models against environmental changes.
arXiv Detail & Related papers (2024-09-23T15:20:33Z) - Robust Quantum Sensing with Multiparameter Decorrelation [0.15705429611931054]
We develop a new approach, adaptable to any quantum platform, for designing robust sensing protocols.
We identify information-theoretic goals that guide a machine learning agent through an otherwise intractably large space of potential sensing protocols.
We demonstrate the effect of decorrelation on outcomes and Bayesian inferencing through statistical analysis in parameter space.
arXiv Detail & Related papers (2024-05-13T16:41:32Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Gate-based spin readout of hole quantum dots with site-dependent
$g-$factors [101.23523361398418]
We experimentally investigate a hole double quantum dot in silicon by carrying out spin readout with gate-based reflectometry.
We show that characteristic features in the reflected phase signal arising from magneto-spectroscopy convey information on site-dependent $g-$factors in the two dots.
arXiv Detail & Related papers (2022-06-27T09:07:20Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Quantum parameter estimation in a dissipative environment [44.23814225750129]
We investigate the performance of quantum parameter estimation based on a qubit probe in a dissipative bosonic environment.
It is found that (i) the non-Markovianity can effectively boost the estimation performance and (ii) the estimation precision can be improved by introducing a perpendicular probe-environment interaction.
arXiv Detail & Related papers (2021-10-15T02:43:24Z) - Probing the topological Anderson transition with quantum walks [48.7576911714538]
We consider one-dimensional quantum walks in optical linear networks with synthetically introduced disorder and tunable system parameters.
The option to directly monitor the walker's probability distribution makes this optical platform ideally suited for the experimental observation of the unique signatures of the one-dimensional topological Anderson transition.
arXiv Detail & Related papers (2021-02-01T21:19:15Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z) - Optimal non-classical correlations of light with a levitated nano-sphere [34.82692226532414]
Nonclassical correlations provide a resource for many applications in quantum technology.
Optomechanical systems can generate nonclassical correlations between the mechanical mode and a mode of travelling light.
We propose automated optimization of the production of quantum correlations in such a system.
arXiv Detail & Related papers (2020-06-26T15:27:47Z) - Quantum probing beyond pure dephasing [0.0]
We analyze the performance of a single-qubit probe in characterizing Ohmic bosonic environments at thermal equilibrium.
In particular, we analyze the effects of tuning the interaction Hamiltonian between the probe and the environment.
arXiv Detail & Related papers (2020-03-09T10:06:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.