Scaling Up On-Device LLMs via Active-Weight Swapping Between DRAM and Flash
- URL: http://arxiv.org/abs/2504.08378v1
- Date: Fri, 11 Apr 2025 09:26:47 GMT
- Title: Scaling Up On-Device LLMs via Active-Weight Swapping Between DRAM and Flash
- Authors: Fucheng Jia, Zewen Wu, Shiqi Jiang, Huiqiang Jiang, Qianxi Zhang, Yuqing Yang, Yunxin Liu, Ju Ren, Deyu Zhang, Ting Cao,
- Abstract summary: Large language models (LLMs) are increasingly being deployed on mobile devices, but the limited DRAM capacity constrains the deployable model size.<n>This paper introduces ActiveFlow, the first LLM inference framework that can achieve adaptive DRAM usage for modern LLMs.
- Score: 21.8915200300114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are increasingly being deployed on mobile devices, but the limited DRAM capacity constrains the deployable model size. This paper introduces ActiveFlow, the first LLM inference framework that can achieve adaptive DRAM usage for modern LLMs (not ReLU-based), enabling the scaling up of deployable model sizes. The framework is based on the novel concept of active weight DRAM-flash swapping and incorporates three novel techniques: (1) Cross-layer active weights preloading. It uses the activations from the current layer to predict the active weights of several subsequent layers, enabling computation and data loading to overlap, as well as facilitating large I/O transfers. (2) Sparsity-aware self-distillation. It adjusts the active weights to align with the dense-model output distribution, compensating for approximations introduced by contextual sparsity. (3) Active weight DRAM-flash swapping pipeline. It orchestrates the DRAM space allocation among the hot weight cache, preloaded active weights, and computation-involved weights based on available memory. Results show ActiveFlow achieves the performance-cost Pareto frontier compared to existing efficiency optimization methods.
Related papers
- R-Sparse: Rank-Aware Activation Sparsity for Efficient LLM Inference [77.47238561728459]
R-Sparse is a training-free activation sparsity approach capable of achieving high sparsity levels in advanced LLMs.
Experiments on Llama-2/3 and Mistral models across ten diverse tasks demonstrate that R-Sparse achieves comparable performance at 50% model-level sparsity.
arXiv Detail & Related papers (2025-04-28T03:30:32Z) - AutoHete: An Automatic and Efficient Heterogeneous Training System for LLMs [68.99086112477565]
Transformer-based large language models (LLMs) have demonstrated exceptional capabilities in sequence modeling and text generation.
Existing heterogeneous training methods significantly expand the scale of trainable models but introduce substantial communication overheads and CPU workloads.
We propose AutoHete, an automatic and efficient heterogeneous training system compatible with both single- GPU and multi- GPU environments.
arXiv Detail & Related papers (2025-02-27T14:46:22Z) - Sliding Window Attention Training for Efficient Large Language Models [55.56483740523027]
We introduce SWAT, which enables efficient long-context handling via Sliding Window Attention Training.<n>This paper first attributes the inefficiency of Transformers to the attention sink phenomenon resulting from the high variance of softmax operation.<n> Experiments demonstrate that SWAT achieves SOTA performance compared with state-of-the-art linear recurrent architectures on eight benchmarks.
arXiv Detail & Related papers (2025-02-26T05:31:44Z) - Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking [12.664307714758843]
We introduce a predictor-free dynamic sparsification approach, which preserves accuracy with minimal fine-tuning.<n>We describe a novel cache-aware masking strategy, which considers the cache state and activation magnitude to further increase cache hit rate.<n>DIP achieves a 46% reduction in memory and 40% increase in throughput with $$ 0.1 loss in perplexity when compared to streaming the dense model from Flash.
arXiv Detail & Related papers (2024-12-02T11:07:51Z) - Anda: Unlocking Efficient LLM Inference with a Variable-Length Grouped Activation Data Format [5.527166214435735]
quantized large language models (LLMs) leverage low-bit integer (INT) weights and retain floating-point (FP) activations.
This shifts the energy and latency bottlenecks towards the FP activations that are associated with costly memory accesses and computations.
Existing LLM accelerators focus primarily on computation optimizations, overlooking the potential of jointly optimizing FP computations and data movement.
arXiv Detail & Related papers (2024-11-24T20:59:39Z) - IntLoRA: Integral Low-rank Adaptation of Quantized Diffusion Models [68.55148272295916]
We propose IntLoRA, to push the efficiency limits by using integer type (INT) low-rank parameters to adapt the quantized diffusion models.
IntLoRA offers three key advantages: (i) for fine-tuning, the pre-trained weights are quantized, reducing memory usage; (ii) for storage, both pre-trained and low-rank weights are in INT which consumes less disk space; (iii) for inference, IntLoRA weights can be naturally merged into quantized pre-trained weights through efficient integer multiplication or bit-shifting.
arXiv Detail & Related papers (2024-10-29T05:50:17Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - Building on Efficient Foundations: Effectively Training LLMs with Structured Feedforward Layers [16.253898272659242]
State-of-the-art results in large language models (LLMs) often rely on scale, which becomes computationally expensive.
Our study focuses on transformer-based LLMs, specifically targeting the computationally intensive feedforward networks (FFNs)
We show that wide and structured networks can utilize training FLOPs more efficiently, with fewer parameters and lower loss than dense models at their optimal trade-off.
arXiv Detail & Related papers (2024-06-24T08:43:21Z) - Head-wise Shareable Attention for Large Language Models [56.92068213969036]
Large Language Models (LLMs) suffer from huge number of parameters, which restricts their deployment on edge devices.
Weight sharing is one promising solution that encourages weight reuse, effectively reducing memory usage with less performance drop.
We present a perspective on head-wise shareable attention for large language models.
arXiv Detail & Related papers (2024-02-19T04:19:36Z) - LLM in a flash: Efficient Large Language Model Inference with Limited Memory [19.668719251238176]
Large language models (LLMs) are central to modern natural language processing, delivering exceptional performance in various tasks.
This paper tackles the challenge of efficiently running LLMs that exceed the available DRAM capacity.
Our method involves constructing an inference cost model that takes into account the characteristics of flash memory.
arXiv Detail & Related papers (2023-12-12T18:57:08Z) - AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [54.692405042065815]
We propose Activation-aware Weight Quantization (AWQ), a hardware-friendly approach for LLM low-bit weight-only quantization.
AWQ protects only 1% salient weights and achieves excellent quantization performance for instruction-tuned LMs and, for the first time, multi-modal LMs.
We also implement TinyChat, an efficient and flexible inference framework tailored for 4-bit on-device LLM/VLMs.
arXiv Detail & Related papers (2023-06-01T17:59:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.