A Reproducibility Study of Graph-Based Legal Case Retrieval
- URL: http://arxiv.org/abs/2504.08400v1
- Date: Fri, 11 Apr 2025 10:04:12 GMT
- Title: A Reproducibility Study of Graph-Based Legal Case Retrieval
- Authors: Gregor Donabauer, Udo Kruschwitz,
- Abstract summary: CaseLink is a graph-based method for legal case retrieval.<n>CaseLink captures higher-order relationships of cases going beyond the stand-alone level of documents.<n>Challenges in reproducing novel results have recently been highlighted.
- Score: 1.6819960041696331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Legal retrieval is a widely studied area in Information Retrieval (IR) and a key task in this domain is retrieving relevant cases based on a given query case, often done by applying language models as encoders to model case similarity. Recently, Tang et al. proposed CaseLink, a novel graph-based method for legal case retrieval, which models both cases and legal charges as nodes in a network, with edges representing relationships such as references and shared semantics. This approach offers a new perspective on the task by capturing higher-order relationships of cases going beyond the stand-alone level of documents. However, while this shift in approaching legal case retrieval is a promising direction in an understudied area of graph-based legal IR, challenges in reproducing novel results have recently been highlighted, with multiple studies reporting difficulties in reproducing previous findings. Thus, in this work we reproduce CaseLink, a graph-based legal case retrieval method, to support future research in this area of IR. In particular, we aim to assess its reliability and generalizability by (i) first reproducing the original study setup and (ii) applying the approach to an additional dataset. We then build upon the original implementations by (iii) evaluating the approach's performance when using a more sophisticated graph data representation and (iv) using an open large language model (LLM) in the pipeline to address limitations that are known to result from using closed models accessed via an API. Our findings aim to improve the understanding of graph-based approaches in legal IR and contribute to improving reproducibility in the field. To achieve this, we share all our implementations and experimental artifacts with the community.
Related papers
- Constrained Auto-Regressive Decoding Constrains Generative Retrieval [71.71161220261655]
Generative retrieval seeks to replace traditional search index data structures with a single large-scale neural network.
In this paper, we examine the inherent limitations of constrained auto-regressive generation from two essential perspectives: constraints and beam search.
arXiv Detail & Related papers (2025-04-14T06:54:49Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
We investigate how model size, training data scale, and inference-time compute jointly influence generative retrieval performance.<n>Our experiments show that n-gram-based methods demonstrate strong alignment with both training and inference scaling laws.<n>We find that LLaMA models consistently outperform T5 models, suggesting a particular advantage for larger decoder-only models in generative retrieval.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
We introduce JudgeRank, a novel agentic reranker that emulates human cognitive processes when assessing document relevance.
We evaluate JudgeRank on the reasoning-intensive BRIGHT benchmark, demonstrating substantial performance improvements over first-stage retrieval methods.
In addition, JudgeRank performs on par with fine-tuned state-of-the-art rerankers on the popular BEIR benchmark, validating its zero-shot generalization capability.
arXiv Detail & Related papers (2024-10-31T18:43:12Z) - A Survey of Low-shot Vision-Language Model Adaptation via Representer Theorem [38.84662767814454]
Key challenge to address under the condition of limited training data is how to fine-tune pre-trained vision-language models in a parameter-efficient manner.
This paper proposes a unified computational framework to integrate existing methods together, identify their nature and support in-depth comparison.
As a demonstration, we extend existing methods by modeling inter-class correlation between representers in reproducing kernel Hilbert space (RKHS)
arXiv Detail & Related papers (2024-10-15T15:22:30Z) - Enhancing Legal Case Retrieval via Scaling High-quality Synthetic Query-Candidate Pairs [67.54302101989542]
Legal case retrieval aims to provide similar cases as references for a given fact description.
Existing works mainly focus on case-to-case retrieval using lengthy queries.
Data scale is insufficient to satisfy the training requirements of existing data-hungry neural models.
arXiv Detail & Related papers (2024-10-09T06:26:39Z) - LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
We introduce the Law Large Language Model (LawLLM), a multi-task model specifically designed for the US legal domain.
LawLLM excels at Similar Case Retrieval (SCR), Precedent Case Recommendation (PCR), and Legal Judgment Prediction (LJP)
We propose customized data preprocessing techniques for each task that transform raw legal data into a trainable format.
arXiv Detail & Related papers (2024-07-27T21:51:30Z) - CaseGNN++: Graph Contrastive Learning for Legal Case Retrieval with Graph Augmentation [25.574138465986977]
Legal case retrieval (LCR) is a specialised information retrieval task that aims to find relevant cases to a given query case.
CaseGNN++ is proposed to simultaneously leverage the edge information and additional label data to discover the latent potential of LCR models.
arXiv Detail & Related papers (2024-05-20T05:16:52Z) - Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval [18.058942674792604]
We propose a novel few-shot workflow tailored to the relevant judgment of legal cases.
By comparing the relevance judgments of LLMs and human experts, we empirically show that we can obtain reliable relevance judgments.
arXiv Detail & Related papers (2024-03-27T09:46:56Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.