Perturbative Distinguishability of Black Hole Microstates from AdS/CFT Correspondence
- URL: http://arxiv.org/abs/2504.08402v1
- Date: Fri, 11 Apr 2025 10:09:37 GMT
- Title: Perturbative Distinguishability of Black Hole Microstates from AdS/CFT Correspondence
- Authors: Jiaju Zhang,
- Abstract summary: We establish direct evidence for the perturbative distinguishability between black hole microstates and thermal states using the AdS/CFT correspondence.<n>In two-dimensional holographic conformal field theories, we obtain the short interval expansion of subsystem fidelity and quantum Jensen-Shannon divergence.
- Score: 0.087024326813104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We establish direct evidence for the perturbative distinguishability between black hole microstates and thermal states using the AdS/CFT correspondence. In two-dimensional holographic conformal field theories, we obtain the short interval expansion of subsystem fidelity and quantum Jensen-Shannon divergence, both of which provide rigorous lower and upper bounds for trace distance. This result demonstrates that quantum gravity corrections break semiclassical indistinguishability, thereby supporting the recovery of information even from a small amount of the Hawking radiation.
Related papers
- Spectral truncation of out-of-time-ordered correlators in dissipative system [44.99833362998488]
Out-of-time-ordered correlators (OTOCs) have emerged as powerful tools for diagnosing quantum chaos and information scrambling.
We investigate the spectral decomposition of OTOCs in open quantum systems using the dissipative modified kicked rotator (DMKR) as a paradigmatic model.
Our results provide a quantitative framework for understanding OTOCs in dissipative quantum systems and suggest new avenues for experimental exploration in open quantum platforms.
arXiv Detail & Related papers (2025-03-05T17:22:25Z) - Bipartite Relativistic Quantum Information from Effective Field Theory Approach with Implications to Contextual Meanings of Locality and Quantumness [0.023020018305241332]
We study the relativistic quantum information (RQI) of two static UDW-charged qubits with or without a black hole.
The RQI of the quantum state of the mediator field can be probed by the reduced final states of UDW detectors.
We find that QFT and RQI agree on quantumness based on different physical reasons but may not agree on locality.
arXiv Detail & Related papers (2024-11-14T12:56:45Z) - Distribution of distance-based quantum resources outside a radiating
Schwarzschild black hole [2.6098692031389583]
We examine the distribution of quantum resources in the proximity of a Schwarzschild black hole.
We find that coherence and discord exhibit sudden disappearance for certain initial states.
In contrast to coherence and discord, we are unable to regenerate entanglement for a given initial state.
arXiv Detail & Related papers (2024-02-19T17:30:39Z) - Theory of non-Hermitian fermionic superfluidity on a honeycomb lattice:
Interplay between exceptional manifolds and van Hove Singularity [0.0]
We study the non-Hermitian fermionic superfluidity subject to dissipation of Cooper pairs on a honeycomb lattice.
We demonstrate the emergence of the dissipation-induced superfluid phase that is anomalously enlarged by a cusp on the phase boundary.
arXiv Detail & Related papers (2023-09-28T06:21:55Z) - Probing multi-mobility edges in quasiperiodic mosaic lattices [36.63101591801625]
The mobility edge (ME) is a crucial concept in understanding localization physics.
Here, we provide experimental evidence to address the possibility of a single system exhibiting multiple MEs.
By single site injection and scanning the disorder level, we could approximately probe the ME of the modulated lattice.
arXiv Detail & Related papers (2023-06-19T10:21:33Z) - Overlapping qubits from non-isometric maps and de Sitter tensor networks [41.94295877935867]
We show that processes in local effective theories can be spoofed with a quantum system with fewer degrees of freedom.
We highlight how approximate overlapping qubits are conceptually connected to Hilbert space dimension verification, degree-of-freedom counting in black holes and holography.
arXiv Detail & Related papers (2023-04-05T18:08:30Z) - Gravitational orbits, double-twist mirage, and many-body scars [77.34726150561087]
We explore the implications of stable gravitational orbits around an AdS black hole for the boundary conformal field theory.
The orbits are long-lived states that eventually decay due to gravitational radiation and tunneling.
arXiv Detail & Related papers (2022-04-20T19:18:05Z) - Locality of Spontaneous Symmetry Breaking and Universal Spacing
Distribution of Topological Defects Formed Across a Phase Transition [62.997667081978825]
A continuous phase transition results in the formation of topological defects with a density predicted by the Kibble-Zurek mechanism (KZM)
We characterize the spatial distribution of point-like topological defects in the resulting nonequilibrium state and model it using a Poisson point process in arbitrary spatial dimension with KZM density.
arXiv Detail & Related papers (2022-02-23T19:00:06Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Relative Entropy of Random States and Black Holes [0.0]
We study the relative entropy of highly excited quantum states.
We develop a large-N diagrammatic technique for the relative entropy.
We find that black hole microstates are distinguishable even when the observer has arbitrarily small access to the quantum state.
arXiv Detail & Related papers (2021-02-09T19:00:01Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Atomic self-organization emerging from tunable quadrature coupling [5.624813092014403]
We propose a novel scheme to couple two density-wave degrees of freedom of a BEC to two quadratures of the cavity field.
We unravel a dynamically unstable state induced by the cavity dissipation.
Our work enriches the quantum simulation toolbox in the cavity-quantum-electrodynamics system.
arXiv Detail & Related papers (2020-04-07T13:25:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.