PMNI: Pose-free Multi-view Normal Integration for Reflective and Textureless Surface Reconstruction
- URL: http://arxiv.org/abs/2504.08410v2
- Date: Mon, 14 Apr 2025 01:50:54 GMT
- Title: PMNI: Pose-free Multi-view Normal Integration for Reflective and Textureless Surface Reconstruction
- Authors: Mingzhi Pei, Xu Cao, Xiangyi Wang, Heng Guo, Zhanyu Ma,
- Abstract summary: We present PMNI (Pose-free Multi-view Normal Integration), a neural surface reconstruction method.<n>By enforcing geometric constraints from surface normals and multi-view shape consistency, PMNI simultaneously recovers accurate camera poses and high-fidelity surface geometry.<n> Experimental results on synthetic and real-world datasets show that our method achieves state-of-the-art performance in the reconstruction of reflective surfaces.
- Score: 20.667434274495957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reflective and textureless surfaces remain a challenge in multi-view 3D reconstruction. Both camera pose calibration and shape reconstruction often fail due to insufficient or unreliable cross-view visual features. To address these issues, we present PMNI (Pose-free Multi-view Normal Integration), a neural surface reconstruction method that incorporates rich geometric information by leveraging surface normal maps instead of RGB images. By enforcing geometric constraints from surface normals and multi-view shape consistency within a neural signed distance function (SDF) optimization framework, PMNI simultaneously recovers accurate camera poses and high-fidelity surface geometry. Experimental results on synthetic and real-world datasets show that our method achieves state-of-the-art performance in the reconstruction of reflective surfaces, even without reliable initial camera poses.
Related papers
- NeRSP: Neural 3D Reconstruction for Reflective Objects with Sparse Polarized Images [62.752710734332894]
NeRSP is a Neural 3D reconstruction technique for Reflective surfaces with Sparse Polarized images.
We derive photometric and geometric cues from the polarimetric image formation model and multiview azimuth consistency.
We achieve the state-of-the-art surface reconstruction results with only 6 views as input.
arXiv Detail & Related papers (2024-06-11T09:53:18Z) - NoPose-NeuS: Jointly Optimizing Camera Poses with Neural Implicit
Surfaces for Multi-view Reconstruction [0.0]
NoPose-NeuS is a neural implicit surface reconstruction method that extends NeuS to jointly optimize camera poses with the geometry and color networks.
We show that the proposed method can estimate relatively accurate camera poses, while maintaining a high surface reconstruction quality with 0.89 mean Chamfer distance.
arXiv Detail & Related papers (2023-12-23T12:18:22Z) - UniSDF: Unifying Neural Representations for High-Fidelity 3D Reconstruction of Complex Scenes with Reflections [87.191742674543]
We propose UniSDF, a general purpose 3D reconstruction method that can reconstruct large complex scenes with reflections.<n>Our method is able to robustly reconstruct complex large-scale scenes with fine details and reflective surfaces, leading to the best overall performance.
arXiv Detail & Related papers (2023-12-20T18:59:42Z) - Multi-View Neural Surface Reconstruction with Structured Light [7.709526244898887]
Three-dimensional (3D) object reconstruction based on differentiable rendering (DR) is an active research topic in computer vision.
We introduce active sensing with structured light (SL) into multi-view 3D object reconstruction based on DR to learn the unknown geometry and appearance of arbitrary scenes and camera poses.
Our method realizes high reconstruction accuracy in the textureless region and reduces efforts for camera pose calibration.
arXiv Detail & Related papers (2022-11-22T03:10:46Z) - High-Quality RGB-D Reconstruction via Multi-View Uncalibrated
Photometric Stereo and Gradient-SDF [48.29050063823478]
We present a novel multi-view RGB-D based reconstruction method that tackles camera pose, lighting, albedo, and surface normal estimation.
The proposed method formulates the image rendering process using specific physically-based model(s) and optimize the surface's volumetric quantities on the actual surface.
arXiv Detail & Related papers (2022-10-21T19:09:08Z) - SIDER: Single-Image Neural Optimization for Facial Geometric Detail
Recovery [54.64663713249079]
SIDER is a novel photometric optimization method that recovers detailed facial geometry from a single image in an unsupervised manner.
In contrast to prior work, SIDER does not rely on any dataset priors and does not require additional supervision from multiple views, lighting changes or ground truth 3D shape.
arXiv Detail & Related papers (2021-08-11T22:34:53Z) - Multi-view 3D Reconstruction of a Texture-less Smooth Surface of Unknown
Generic Reflectance [86.05191217004415]
Multi-view reconstruction of texture-less objects with unknown surface reflectance is a challenging task.
This paper proposes a simple and robust solution to this problem based on a co-light scanner.
arXiv Detail & Related papers (2021-05-25T01:28:54Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.