論文の概要: Constrained Machine Learning Through Hyperspherical Representation
- arxiv url: http://arxiv.org/abs/2504.08415v1
- Date: Fri, 11 Apr 2025 10:19:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:19:50.997596
- Title: Constrained Machine Learning Through Hyperspherical Representation
- Title(参考訳): 超球面表現による制約付き機械学習
- Authors: Gaetano Signorelli, Michele Lombardi,
- Abstract要約: 凸領域と有界領域の出力空間における制約を強制する新しい手法を提案する。
提案手法は,他の手法に匹敵する予測性能を有し,制約満足度を100%保証し,推論時の計算コストを最小限に抑える。
- 参考スコア(独自算出の注目度): 4.129133569151574
- License:
- Abstract: The problem of ensuring constraints satisfaction on the output of machine learning models is critical for many applications, especially in safety-critical domains. Modern approaches rely on penalty-based methods at training time, which do not guarantee to avoid constraints violations; or constraint-specific model architectures (e.g., for monotonocity); or on output projection, which requires to solve an optimization problem that might be computationally demanding. We present the Hypersherical Constrained Representation, a novel method to enforce constraints in the output space for convex and bounded feasibility regions (generalizable to star domains). Our method operates on a different representation system, where Euclidean coordinates are converted into hyperspherical coordinates relative to the constrained region, which can only inherently represent feasible points. Experiments on a synthetic and a real-world dataset show that our method has predictive performance comparable to the other approaches, can guarantee 100% constraint satisfaction, and has a minimal computational cost at inference time.
- Abstract(参考訳): 機械学習モデルの出力に対する制約の満足度を保証する問題は、多くのアプリケーション、特に安全クリティカルな領域において重要である。
現代のアプローチは、制約違反を避けることを保証しないトレーニング時のペナルティベースの手法、制約固有のモデルアーキテクチャ(例えばモノトノクティ)、あるいは計算的に要求されるであろう最適化問題の解決を必要とする出力プロジェクションに依存している。
本稿では、凸領域と有界実現可能性領域(スター領域に一般化可能な)の出力空間における制約を強制する新しい方法であるハイパーシャリカル制約表現(Hypersherical Constrained Representation)を提案する。
本手法は, ユークリッド座標を制約領域に対して超球面座標に変換し, 本質的には可能な点のみを表現できる, 異なる表現系で動作する。
合成および実世界のデータセットを用いた実験により,本手法は他の手法に匹敵する予測性能を示し,制約満足度を100%保証し,推論時の計算コストを最小化できることを示した。
関連論文リスト
- Decentralized Inference for Spatial Data Using Low-Rank Models [4.168323530566095]
本稿では,空間的低ランクモデルにおけるパラメータ推論に適した分散化フレームワークを提案する。
重要な障害は、観測中の空間的依存から生じ、ログのような状態が要約として表現されるのを防ぐ。
提案手法では,効率的なパラメータ最適化のために,マルチセンサと動的コンセンサス平均化を統合したブロック降下法を用いる。
論文 参考訳(メタデータ) (2025-02-01T04:17:01Z) - Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
本稿では,1次と2次の両方の定常点を見つけるための信頼逐次準計画法を提案する。
本手法は, 1次定常点に収束するため, 対象対象の近似を最小化して定義された各イテレーションの勾配ステップを計算する。
2階定常点に収束するため,本手法は負曲率を減少するヘッセン行列を探索する固有ステップも計算する。
論文 参考訳(メタデータ) (2024-09-24T04:39:47Z) - Optimization-Driven Adaptive Experimentation [7.948144726705323]
実世界の実験には、バッチで遅延したフィードバック、非定常性、複数の目的と制約、そして(時には)パーソナライゼーションが含まれる。
これらの課題にプロブレム単位で対処するための適応的手法の調整は不可能であり、静的設計はデファクトスタンダードのままである。
本稿では,多種多様な目的,制約,統計的手順を柔軟に組み込む数学的プログラミングの定式化について述べる。
論文 参考訳(メタデータ) (2024-08-08T16:29:09Z) - Online Constraint Tightening in Stochastic Model Predictive Control: A
Regression Approach [49.056933332667114]
確率制約付き最適制御問題に対する解析解は存在しない。
制御中の制約強調パラメータをオンラインで学習するためのデータ駆動型アプローチを提案する。
提案手法は, 確率制約を厳密に満たす制約強調パラメータを導出する。
論文 参考訳(メタデータ) (2023-10-04T16:22:02Z) - Neural Fields with Hard Constraints of Arbitrary Differential Order [61.49418682745144]
我々は、ニューラルネットワークに厳しい制約を課すための一連のアプローチを開発する。
制約は、ニューラルネットワークとそのデリバティブに適用される線形作用素として指定することができる。
私たちのアプローチは、広範囲の現実世界のアプリケーションで実証されています。
論文 参考訳(メタデータ) (2023-06-15T08:33:52Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - A Survey of Constrained Gaussian Process Regression: Approaches and
Implementation Challenges [0.0]
実証性や有界制約、単調性および凸性制約、微分方程式制約、境界条件制約を含むガウス過程制約のいくつかのクラスの概要を提供する。
本稿では,各手法の背景にある戦略と実装の違いを比較し,制約によってもたらされる計算上の課題について議論する。
論文 参考訳(メタデータ) (2020-06-16T17:03:36Z) - Learning Constraints from Locally-Optimal Demonstrations under Cost
Function Uncertainty [6.950510860295866]
本稿では,最適化されたコスト関数が学習者に不確実な地域最適実証からパラメトリック制約を学習するアルゴリズムを提案する。
本手法では、混合整数線形プログラム(MILP)における実演のKKT最適条件を用いて、実演の局所的最適性に整合した制約を学習する。
7-DOFアームと四重項の制約を学習することで高次元制約とシステムの評価を行い、競合する制約学習手法よりも優れており、環境における新しい制約満足軌道の計画に効果的に利用できることを示す。
論文 参考訳(メタデータ) (2020-01-25T15:57:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。