論文の概要: seeBias: A Comprehensive Tool for Assessing and Visualizing AI Fairness
- arxiv url: http://arxiv.org/abs/2504.08418v1
- Date: Fri, 11 Apr 2025 10:23:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:19:49.977774
- Title: seeBias: A Comprehensive Tool for Assessing and Visualizing AI Fairness
- Title(参考訳): seeBias:AIフェアネスを評価し視覚化するための総合ツール
- Authors: Yilin Ning, Yian Ma, Mingxuan Liu, Xin Li, Nan Liu,
- Abstract要約: seeBiasは、モデルフェアネスと予測パフォーマンスを総合的に評価するためのRパッケージである。
seeBiasは、どのように公正評価をサポートし、従来の公正度指標が見落としている可能性がある相違を明らかにするかを示す。
- 参考スコア(独自算出の注目度): 14.36364087809195
- License:
- Abstract: Fairness in artificial intelligence (AI) prediction models is increasingly emphasized to support responsible adoption in high-stakes domains such as health care and criminal justice. Guidelines and implementation frameworks highlight the importance of both predictive accuracy and equitable outcomes. However, current fairness toolkits often evaluate classification performance disparities in isolation, with limited attention to other critical aspects such as calibration. To address these gaps, we present seeBias, an R package for comprehensive evaluation of model fairness and predictive performance. seeBias offers an integrated evaluation across classification, calibration, and other performance domains, providing a more complete view of model behavior. It includes customizable visualizations to support transparent reporting and responsible AI implementation. Using public datasets from criminal justice and healthcare, we demonstrate how seeBias supports fairness evaluations, and uncovers disparities that conventional fairness metrics may overlook. The R package is available on GitHub, and a Python version is under development.
- Abstract(参考訳): 人工知能(AI)予測モデルの公正性は、医療や刑事司法といった高額な領域における責任ある採用を支援するためにますます強調されている。
ガイドラインと実装フレームワークは、予測精度と等価な結果の両方の重要性を強調している。
しかし、現在の公平度ツールキットは、キャリブレーションなどの他の重要な側面に限定して、独立して分類性能の相違を評価することが多い。
このようなギャップに対処するため,モデルフェアネスと予測性能を総合的に評価するRパッケージである seeBias を提案する。
seeBiasは、分類、キャリブレーション、その他のパフォーマンスドメインの総合的な評価を提供し、モデルの振る舞いをより完全なビューを提供する。
これには、透過的なレポートと責任あるAI実装をサポートするカスタマイズ可能な可視化が含まれている。
刑事司法と医療の公開データセットを用いて、 seeBias がフェアネス評価をどのようにサポートするかを示し、従来のフェアネス指標が見落としている可能性のある相違を明らかにする。
RパッケージはGitHubで入手でき、Pythonバージョンが開発中である。
関連論文リスト
- Identifying and Mitigating Social Bias Knowledge in Language Models [52.52955281662332]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
クロスドメイン学習(CD)とモデルフェアネスの関係について検討する。
いくつかの人口集団にまたがる顔画像と医療画像のベンチマークと、分類とローカライゼーションタスクについて紹介する。
本研究は,3つの最先端フェアネスアルゴリズムとともに,14のCDアプローチをカバーし,前者が後者に勝ることを示す。
論文 参考訳(メタデータ) (2023-03-25T09:34:05Z) - Evaluating Probabilistic Classifiers: The Triptych [62.997667081978825]
本稿では,予測性能の異なる相補的な側面に焦点をあてた診断グラフィックのトリチチを提案し,研究する。
信頼性図は校正に対処し、受信動作特性(ROC)曲線は識別能力を診断し、マーフィー図は全体的な予測性能と価値を視覚化する。
論文 参考訳(メタデータ) (2023-01-25T19:35:23Z) - ComplAI: Theory of A Unified Framework for Multi-factor Assessment of
Black-Box Supervised Machine Learning Models [6.279863832853343]
ComplAIは、説明可能性、堅牢性、パフォーマンス、公正性、モデル行動を有効にし、観察し、分析し、定量化するユニークなフレームワークである。
教師付き機械学習モデルの評価は、正しい予測を行う能力だけでなく、全体的な責任の観点から行う。
論文 参考訳(メタデータ) (2022-12-30T08:48:19Z) - fairlib: A Unified Framework for Assessing and Improving Classification
Fairness [66.27822109651757]
Fairlibは、分類の公平さを評価し改善するためのオープンソースのフレームワークである。
我々は、前処理、訓練時間、後処理を含む14のデバイアス化手法を実装した。
組み込まれたメトリクスは、最も一般的に使用されるフェアネス基準をカバーし、フェアネス評価のためにさらに一般化およびカスタマイズすることができる。
論文 参考訳(メタデータ) (2022-05-04T03:50:23Z) - Enriching ImageNet with Human Similarity Judgments and Psychological
Embeddings [7.6146285961466]
人間の知覚と推論のタスク汎用能力を具現化したデータセットを提案する。
ImageNet(ImageNet-HSJ)のHuman similarity Judgments拡張は、人間の類似性判定で構成されている。
新しいデータセットは、教師なし学習アルゴリズムの評価を含む、タスクとパフォーマンスのメトリクスの範囲をサポートする。
論文 参考訳(メタデータ) (2020-11-22T13:41:54Z) - Prune Responsibly [0.913755431537592]
機械学習アプリケーションにおける特定の公正性の定義を無視すると、基礎となるモデルを刈り取ることがそれに影響を及ぼす。
本研究では,100万以上の画像分類モデルを対象としたタスクやアーキテクチャにおいて,望ましくない性能不均衡の出現と悪化を調査・記録する。
ニューラルネットワークプルーニングに関する実際のエンジニアリング意思決定において、バイアス、公平性、包括的メトリクスを含む透過的なレポートの必要性を実証する。
論文 参考訳(メタデータ) (2020-09-10T04:43:11Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
本稿では,外部監査役の役割とモデル説明可能性を強調するフェアネスの新たな定義を提案する。
逆代理モデルのSHAP値から構築した正規化を用いてモデルバイアスを緩和するフレームワークを開発する。
合成データセット、UCIアダルト(国勢調査)データセット、実世界の信用評価データセットである。
論文 参考訳(メタデータ) (2020-03-11T14:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。