Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices
- URL: http://arxiv.org/abs/2504.08557v1
- Date: Fri, 11 Apr 2025 14:06:05 GMT
- Title: Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices
- Authors: Rafael D. Soares, Youenn Le Gal, Chun Y. Leung, Dganit Meidan, Alessandro Romito, Marco SchirĂ²,
- Abstract summary: Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.<n>We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.<n>We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
- Score: 37.69303106863453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by the competition between unitary dynamics and dissipation. In this work, we reveal the fundamental role of conservation laws in shaping this competition. Focusing on translation-invariant non-interacting fermionic models with U(1) symmetry, we present a theoretical framework to understand the structure of the steady-state of these models and their entanglement content based on two ingredients: the nature of the spectrum of the non-Hermitian Hamiltonian and the constraints imposed on the steady-state single-particle occupation by the conserved quantities. These emerge from an interplay between Hamiltonian symmetries and initial state, due to the non-linearity of measurement back-action. For models with complex energy spectrum, we show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue. As a result, one can have partially filled or fully filled bands in the steady-state, leading to an entanglement entropy undergoing a filling-driven transition between critical sub volume scaling and area-law, similar to ground-state problems. Conversely, when the spectrum is fully real, we provide evidence that local observables can be captured using a diagonal ensemble, and the entanglement entropy exhibits a volume-law scaling independently on the initial state, akin to unitary dynamics. We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model, uncovering a rich interplay between the single-particle spectrum and conservation laws in determining the steady-state structure and the entanglement transitions. These conclusions are supported by exact analytical calculations and numerical calculations relying on the Faber polynomial method.
Related papers
- Physical aspects of symmetry breaking in non-interacting Bose gases at thermal equilibrium [0.0]
Theory of non-interacting Bose gases is supplemented by a numerical quantum field description with a two-dimensional non-local order parameter.<n>It is possible to explain certain new fundamental symmetry aspects of ideal and very weakly interacting Bose gases in the limit of fluctuating particle numbers.<n>Coherently coupling condensate and non-condensate parts as a direct consequence of the increasing quantum coherence time between the different quantum field components in the Bose gas from cooling to below the critical temperature.
arXiv Detail & Related papers (2024-10-12T08:55:34Z) - Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.<n>Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)<n>By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Chiral metals and entrapped insulators in a one-dimensional topological
non-Hermitian system [4.3012765978447565]
We study many-body'steady states' that arise in the non-Hermitian generalisation of the non-interacting Su-Schrieffer-Heeger model at a finite density of fermions.
arXiv Detail & Related papers (2021-11-03T13:42:18Z) - Dissipative dynamics in open XXZ Richardson-Gaudin models [0.0]
In specific open systems with collective dissipation the Liouvillian can be mapped to a non-Hermitian Hamiltonian.
We consider such a system where the Liouvillian is mapped to an XXZ Richardson-Gaudin integrable model and detail its exact Bethe ansatz solution.
arXiv Detail & Related papers (2021-08-03T18:00:08Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Quasi-Locality Bounds for Quantum Lattice Systems. Part II.
Perturbations of Frustration-Free Spin Models with Gapped Ground States [0.0]
We study the stability with respect to a broad class of perturbations of gapped ground state phases of quantum spin systems.
Under a condition of Local Topological Quantum Order, the bulk gap is stable under perturbations that decay at long distances faster than a stretched exponential.
arXiv Detail & Related papers (2020-10-29T03:24:19Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.