Analyzing 16,193 LLM Papers for Fun and Profits
- URL: http://arxiv.org/abs/2504.08619v4
- Date: Tue, 22 Apr 2025 19:13:09 GMT
- Title: Analyzing 16,193 LLM Papers for Fun and Profits
- Authors: Zhiqiu Xia, Lang Zhu, Bingzhe Li, Feng Chen, Qiannan Li, Chunhua Liao, Feiyi Wang, Hang Liu,
- Abstract summary: Large Language Models (LLMs) are reshaping the landscape of computer science research.<n>This study provides a comprehensive analysis of the publication trend of LLM-related papers in 77 top-tier computer science conferences over the past six years.
- Score: 6.295399100138773
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are reshaping the landscape of computer science research, driving significant shifts in research priorities across diverse conferences and fields. This study provides a comprehensive analysis of the publication trend of LLM-related papers in 77 top-tier computer science conferences over the past six years (2019-2024). We approach this analysis from four distinct perspectives: (1) We investigate how LLM research is driving topic shifts within major conferences. (2) We adopt a topic modeling approach to identify various areas of LLM-related topic growth and reveal the topics of concern at different conferences. (3) We explore distinct contribution patterns of academic and industrial institutions. (4) We study the influence of national origins on LLM development trajectories. Synthesizing the findings from these diverse analytical angles, we derive ten key insights that illuminate the dynamics and evolution of the LLM research ecosystem.
Related papers
- Inverse Reinforcement Learning Meets Large Language Model Post-Training: Basics, Advances, and Opportunities [62.05713042908654]
This paper provides a review of advances in Large Language Models (LLMs) alignment through the lens of inverse reinforcement learning (IRL)<n>We highlight the necessity of constructing neural reward models from human data and discuss the formal and practical implications of this paradigm shift.
arXiv Detail & Related papers (2025-07-17T14:22:24Z) - A Survey of AIOps in the Era of Large Language Models [60.59720351854515]
We analyzed 183 research papers published between January 2020 and December 2024 to answer four key research questions (RQs)<n>We discuss the state-of-the-art advancements and trends, identify gaps in existing research, and propose promising directions for future exploration.
arXiv Detail & Related papers (2025-06-23T02:40:16Z) - How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective [64.00022624183781]
Large language models (LLMs) can assess relevance and support information retrieval (IR) tasks.
We investigate how different LLM modules contribute to relevance judgment through the lens of mechanistic interpretability.
arXiv Detail & Related papers (2025-04-10T16:14:55Z) - Game Theory Meets Large Language Models: A Systematic Survey [18.07120579043073]
The rapid advancement of large language models (LLMs) has sparked extensive research exploring the intersection of these two fields.
This paper presents a comprehensive survey of the intersection of these fields, exploring a bidirectional relationship from three perspectives.
By bridging theoretical rigor with emerging AI capabilities, this survey aims to foster interdisciplinary collaboration and drive progress in this evolving research area.
arXiv Detail & Related papers (2025-02-13T08:08:27Z) - LLM4SR: A Survey on Large Language Models for Scientific Research [15.533076347375207]
Large Language Models (LLMs) offer unprecedented support across various stages of the research cycle.<n>This paper presents the first systematic survey dedicated to exploring how LLMs are revolutionizing the scientific research process.
arXiv Detail & Related papers (2025-01-08T06:44:02Z) - Transforming Scholarly Landscapes: Influence of Large Language Models on Academic Fields beyond Computer Science [77.31665252336157]
Large Language Models (LLMs) have ushered in a transformative era in Natural Language Processing (NLP)
This work empirically examines the influence and use of LLMs in fields beyond NLP.
arXiv Detail & Related papers (2024-09-29T01:32:35Z) - Classical Machine Learning: Seventy Years of Algorithmic Learning Evolution [1.121816400852218]
Machine learning (ML) has transformed numerous fields, but understanding its foundational research is crucial for its continued progress.
This paper presents an overview of the significant classical ML algorithms and examines the state-of-the-art publications spanning twelve decades.
We analyzed a dataset of highly cited papers from prominent ML conferences and journals, employing citation and keyword analyses to uncover critical insights.
arXiv Detail & Related papers (2024-08-03T11:07:10Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Self-assessment, Exhibition, and Recognition: a Review of Personality in Large Language Models [29.086329448754412]
We present a comprehensive review by categorizing current studies into three research problems: self-assessment, exhibition, and recognition.
Our paper is the first comprehensive survey of up-to-date literature on personality in large language models.
arXiv Detail & Related papers (2024-06-25T15:08:44Z) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
Large language models (LLMs) have revolutionized the way text and other modalities of data are handled.
We aim to provide a more holistic view of the research landscape by unveiling cross-field and cross-modal connections between scientific LLMs.
arXiv Detail & Related papers (2024-06-16T08:03:24Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z) - A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and
Why? [84.46288849132634]
We propose a systematic framework for analyzing the evolution of research topics in a scientific field using causal discovery and inference techniques.
We define three variables to encompass diverse facets of the evolution of research topics within NLP.
We utilize a causal discovery algorithm to unveil the causal connections among these variables using observational data.
arXiv Detail & Related papers (2023-05-22T11:08:00Z) - A Bibliometric Review of Large Language Models Research from 2017 to
2023 [1.4190701053683017]
Large language models (LLMs) are language models that have demonstrated outstanding performance across a range of natural language processing (NLP) tasks.
This paper serves as a roadmap for researchers, practitioners, and policymakers to navigate the current landscape of LLMs research.
arXiv Detail & Related papers (2023-04-03T21:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.