Channel Estimation by Infinite Width Convolutional Networks
- URL: http://arxiv.org/abs/2504.08660v1
- Date: Fri, 11 Apr 2025 16:01:17 GMT
- Title: Channel Estimation by Infinite Width Convolutional Networks
- Authors: Mohammed Mallik, Guillaume Villemaud,
- Abstract summary: In wireless communications, estimation of channels in OFDM systems spans frequency and time.<n>Deep learning estimators require large amounts of training data, computational resources, and true channels to produce accurate channel estimates.<n>A convolutional neural tangent kernel (CNTK) is derived from an infinitely wide convolutional network whose training dynamics can be expressed by a closed-form equation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In wireless communications, estimation of channels in OFDM systems spans frequency and time, which relies on sparse collections of pilot data, posing an ill-posed inverse problem. Moreover, deep learning estimators require large amounts of training data, computational resources, and true channels to produce accurate channel estimates, which are not realistic. To address this, a convolutional neural tangent kernel (CNTK) is derived from an infinitely wide convolutional network whose training dynamics can be expressed by a closed-form equation. This CNTK is used to impute the target matrix and estimate the missing channel response using only the known values available at pilot locations. This is a promising solution for channel estimation that does not require a large training set. Numerical results on realistic channel datasets demonstrate that our strategy accurately estimates the channels without a large dataset and significantly outperforms deep learning methods in terms of speed, accuracy, and computational resources.
Related papers
- Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - An Efficient Machine Learning-based Channel Prediction Technique for
OFDM Sub-Bands [0.0]
We propose an efficient machine learning (ML)-based technique for channel prediction in OFDM sub-bands.
The novelty of the proposed approach lies in the training of channel fading samples used to estimate future channel behaviour in selective fading.
arXiv Detail & Related papers (2023-05-31T09:41:27Z) - Deep Learning Based Channel Estimation in High Mobility Communications
Using Bi-RNN Networks [7.310043452300738]
We propose an optimized and robust bi-directional recurrent neural network (Bi-RNN) based channel estimator to accurately estimate the doubly-selective channel.
The developed Bi-GRU estimator significantly outperforms the recently proposed CNN-based estimators in different mobility scenarios.
arXiv Detail & Related papers (2023-04-29T09:20:28Z) - Efficient Deep Unfolding for SISO-OFDM Channel Estimation [0.0]
It is possible to perform SISO-OFDM channel estimation using sparse recovery techniques.
In this paper, an unfolded neural network is used to lighten this constraint.
Its unsupervised online learning allows to learn the system's imperfections in order to enhance the estimation performance.
arXiv Detail & Related papers (2022-10-11T11:29:54Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - Low Complexity Channel estimation with Neural Network Solutions [1.0499453838486013]
We deploy a general residual convolutional neural network to achieve channel estimation in a downlink scenario.
Compared with other deep learning methods for channel estimation, our results suggest improved mean squared error computation.
arXiv Detail & Related papers (2022-01-24T19:55:10Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - FedRec: Federated Learning of Universal Receivers over Fading Channels [92.15358738530037]
We propose a neural network-based symbol detection technique for downlink fading channels.
Multiple users collaborate to jointly learn a universal data-driven detector, hence the name FedRec.
The performance of the resulting receiver is shown to approach the MAP performance in diverse channel conditions without requiring knowledge of the fading statistics.
arXiv Detail & Related papers (2020-11-14T11:29:55Z) - Federated Learning for Channel Estimation in Conventional and
RIS-Assisted Massive MIMO [12.487990897680422]
Channel estimation via machine learning requires model training on a dataset, which usually includes the received pilot signals as input and channel data as output.
In previous works, model training is mostly done via centralized learning (CL), where the whole training dataset is collected from the users at the base station (BS)
We propose a federated learning (FL) framework for channel estimation. We design a convolutional neural network (CNN) trained on the local datasets of the users without sending them to the BS.
We evaluate the performance for noisy and quantized model transmission and show that the proposed approach provides approximately 16 times lower overhead than CL
arXiv Detail & Related papers (2020-08-25T06:51:18Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.