Towards an Understanding of Context Utilization in Code Intelligence
- URL: http://arxiv.org/abs/2504.08734v1
- Date: Fri, 11 Apr 2025 17:59:53 GMT
- Title: Towards an Understanding of Context Utilization in Code Intelligence
- Authors: Yanlin Wang, Kefeng Duan, Dewu Zheng, Ensheng Shi, Fengji Zhang, Yanli Wang, Jiachi Chen, Xilin Liu, Yuchi Ma, Hongyu Zhang, Qianxiang Wang, Zibin Zheng,
- Abstract summary: Code intelligence aims to improve the effectiveness and efficiency of various code-related tasks.<n>Recent research suggests that incorporating contextual information beyond the basic original task inputs can substantially enhance model performance.<n>Despite growing academic interest, there is a lack of systematic analysis of context in code intelligence.
- Score: 37.85380387094615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Code intelligence is an emerging domain in software engineering, aiming to improve the effectiveness and efficiency of various code-related tasks. Recent research suggests that incorporating contextual information beyond the basic original task inputs (i.e., source code) can substantially enhance model performance. Such contextual signals may be obtained directly or indirectly from sources such as API documentation or intermediate representations like abstract syntax trees can significantly improve the effectiveness of code intelligence. Despite growing academic interest, there is a lack of systematic analysis of context in code intelligence. To address this gap, we conduct an extensive literature review of 146 relevant studies published between September 2007 and August 2024. Our investigation yields four main contributions. (1) A quantitative analysis of the research landscape, including publication trends, venues, and the explored domains; (2) A novel taxonomy of context types used in code intelligence; (3) A task-oriented analysis investigating context integration strategies across diverse code intelligence tasks; (4) A critical evaluation of evaluation methodologies for context-aware methods. Based on these findings, we identify fundamental challenges in context utilization in current code intelligence systems and propose a research roadmap that outlines key opportunities for future research.
Related papers
- Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1) [66.51642638034822]
Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks.<n>Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains.<n>This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs.
arXiv Detail & Related papers (2025-04-04T04:04:56Z) - A Comprehensive Survey on Integrating Large Language Models with Knowledge-Based Methods [4.686190098233778]
Large Language Models (LLMs) can be integrated with structured knowledge-based systems.<n>This article surveys the relationship between LLMs and knowledge bases, looks at how they can be applied in practice, and discusses related technical, operational, and ethical challenges.<n>It demonstrates the merits of incorporating generative AI into structured knowledge-base systems concerning data contextualization, model accuracy, and utilization of knowledge resources.
arXiv Detail & Related papers (2025-01-19T23:25:21Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - Qualitative Data Analysis in Software Engineering: Techniques and Teaching Insights [10.222207222039048]
Software repositories are rich sources of qualitative artifacts, including source code comments, commit messages, issue descriptions, and documentation.
This chapter shifts the focus towards interpreting these artifacts using various qualitative data analysis techniques.
Various coding methods are discussed along with the strategic design of a coding guide to ensure consistency and accuracy in data interpretation.
arXiv Detail & Related papers (2024-06-12T13:56:55Z) - Falcon 7b for Software Mention Detection in Scholarly Documents [7.0413463890126735]
This paper investigates the application of Falcon-7b for the detection and classification of software mentions within scholarly texts.
Through comprehensive experimentation, the paper explores different training strategies, including a dual-classifier approach, adaptive sampling, and weighted loss scaling.
The findings highlight the benefits of selective labelling and adaptive sampling in improving the model's performance.
arXiv Detail & Related papers (2024-05-14T11:37:26Z) - Enhancing Source Code Representations for Deep Learning with Static
Analysis [10.222207222039048]
This paper explores the integration of static analysis and additional context such as bug reports and design patterns into source code representations for deep learning models.
We use the Abstract Syntax Tree-based Neural Network (ASTNN) method and augment it with additional context information obtained from bug reports and design patterns.
Our approach improves the representation and processing of source code, thereby improving task performance.
arXiv Detail & Related papers (2024-02-14T20:17:04Z) - A Systematic Literature Review on Explainability for Machine/Deep Learning-based Software Engineering Research [23.273934717819795]
This paper presents a systematic literature review of approaches that aim to improve the explainability of AI models within the context of Software Engineering.<n>We aim to summarize the SE tasks where XAI techniques have shown success to date; (2) classify and analyze different XAI techniques; and (3) investigate existing evaluation approaches.
arXiv Detail & Related papers (2024-01-26T03:20:40Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
We devise three novel text-based tasks for situational reasoning in the traffic domain.
We adopt four knowledge-enhanced methods that have shown generalization capability across language reasoning tasks in prior work.
We provide in-depth analyses of model performance on data partitions and examine model predictions categorically.
arXiv Detail & Related papers (2023-06-05T01:01:12Z) - Language Model Decoding as Likelihood-Utility Alignment [54.70547032876017]
We introduce a taxonomy that groups decoding strategies based on their implicit assumptions about how well the model's likelihood is aligned with the task-specific notion of utility.
Specifically, by analyzing the correlation between the likelihood and the utility of predictions across a diverse set of tasks, we provide the first empirical evidence supporting the proposed taxonomy.
arXiv Detail & Related papers (2022-10-13T17:55:51Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
We present a new architecture that takes advantage of Natural Language Processing and Machine Learning methods for extracting entities and relationships from research publications.
Within this research work, we i) tackle the challenge of knowledge extraction by employing several state-of-the-art Natural Language Processing and Text Mining tools.
We generated a scientific knowledge graph including 109,105 triples, extracted from 26,827 abstracts of papers within the Semantic Web domain.
arXiv Detail & Related papers (2020-10-28T08:31:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.