Hyper-RAG: Combating LLM Hallucinations using Hypergraph-Driven Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2504.08758v1
- Date: Sun, 30 Mar 2025 12:39:14 GMT
- Title: Hyper-RAG: Combating LLM Hallucinations using Hypergraph-Driven Retrieval-Augmented Generation
- Authors: Yifan Feng, Hao Hu, Xingliang Hou, Shiquan Liu, Shihui Ying, Shaoyi Du, Han Hu, Yue Gao,
- Abstract summary: Large language models (LLMs) have transformed various sectors, including education, finance, and medicine, by enhancing content generation and decision-making processes.<n>However, their integration into the medical field is cautious due to hallucinations, instances where generated content deviates from factual accuracy, potentially leading to adverse outcomes.<n>We introduce Hyper-RAG, a hypergraph-driven Retrieval-Augmented Generation method that comprehensively captures both pairwise and beyond-pairwise correlations in domain-specific knowledge.
- Score: 29.89840262866779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have transformed various sectors, including education, finance, and medicine, by enhancing content generation and decision-making processes. However, their integration into the medical field is cautious due to hallucinations, instances where generated content deviates from factual accuracy, potentially leading to adverse outcomes. To address this, we introduce Hyper-RAG, a hypergraph-driven Retrieval-Augmented Generation method that comprehensively captures both pairwise and beyond-pairwise correlations in domain-specific knowledge, thereby mitigating hallucinations. Experiments on the NeurologyCrop dataset with six prominent LLMs demonstrated that Hyper-RAG improves accuracy by an average of 12.3% over direct LLM use and outperforms Graph RAG and Light RAG by 6.3% and 6.0%, respectively. Additionally, Hyper-RAG maintained stable performance with increasing query complexity, unlike existing methods which declined. Further validation across nine diverse datasets showed a 35.5% performance improvement over Light RAG using a selection-based assessment. The lightweight variant, Hyper-RAG-Lite, achieved twice the retrieval speed and a 3.3% performance boost compared with Light RAG. These results confirm Hyper-RAG's effectiveness in enhancing LLM reliability and reducing hallucinations, making it a robust solution for high-stakes applications like medical diagnostics.
Related papers
- Recognition of Dysarthria in Amyotrophic Lateral Sclerosis patients using Hypernetworks [7.182245711235296]
We present the first study incorporating hypernetworks for recognizing dysarthria.<n> Specifically, we use audio files, convert them into log-Mel spectrogram, delta, and delta-delta, and pass the resulting image through a pretrained modified AlexNet model.<n>Results showed that the proposed approach reaches Accuracy up to 82.66% outperforming strong baselines.
arXiv Detail & Related papers (2025-02-27T15:57:37Z) - RoseRAG: Robust Retrieval-augmented Generation with Small-scale LLMs via Margin-aware Preference Optimization [53.63439735067081]
Large language models (LLMs) have achieved impressive performance but face high computational costs and latency.
Retrieval-augmented generation (RAG) helps by integrating external knowledge, but imperfect retrieval can introduce distracting noise that misleads SLMs.
We propose RoseRAG, a robust RAG framework for SLMs via Margin-aware Preference Optimization.
arXiv Detail & Related papers (2025-02-16T04:56:53Z) - MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
Recent progress in Medical Large Vision-Language Models (Med-LVLMs) has opened up new possibilities for interactive diagnostic tools.<n>Med-LVLMs often suffer from factual hallucination, which can lead to incorrect diagnoses.<n>We propose a versatile multimodal RAG system, MMed-RAG, designed to enhance the factuality of Med-LVLMs.
arXiv Detail & Related papers (2024-10-16T23:03:27Z) - AlzhiNet: Traversing from 2DCNN to 3DCNN, Towards Early Detection and Diagnosis of Alzheimer's Disease [1.6908255257928966]
We present a novel hybrid deep learning framework that integrates 2D Convolutional Neural Networks (2D-CNN) and 3D Convolutional Neural Networks (3D-CNN)
Our framework has been validated on the Magnetic Resonance Imaging (MRI) from Kaggle and MIRIAD datasets, obtaining accuracies of 98.9% and 99.99%, respectively, with an AUC of 100%.
arXiv Detail & Related papers (2024-10-03T17:37:18Z) - A Comprehensive Evaluation of Large Language Models on Mental Illnesses [0.8458496687170665]
GPT-4 and Llama 3 exhibited superior performance in binary disorder detection, with accuracies reaching up to 85% on certain datasets.
prompt engineering played a crucial role in enhancing model performance.
Despite promising results, our analysis identified several challenges, including variability in performance across datasets and the need for careful prompt engineering.
arXiv Detail & Related papers (2024-09-24T02:58:52Z) - Benchmarking Retrieval-Augmented Generation for Medicine [30.390132015614128]
Large language models (LLMs) have achieved state-of-the-art performance on a wide range of medical question answering (QA) tasks.
Retrieval-augmented generation (RAG) is a promising solution and has been widely adopted.
We propose the Medical Information Retrieval-Augmented Generation Evaluation (MIRAGE), a first-of-its-kind benchmark including 7,663 questions from five medical QA datasets.
arXiv Detail & Related papers (2024-02-20T17:44:06Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - A Stitch in Time Saves Nine: Detecting and Mitigating Hallucinations of
LLMs by Validating Low-Confidence Generation [76.34411067299331]
Large language models often tend to 'hallucinate' which critically hampers their reliability.
We propose an approach that actively detects and mitigates hallucinations during the generation process.
We show that the proposed active detection and mitigation approach successfully reduces the hallucinations of the GPT-3.5 model from 47.5% to 14.5% on average.
arXiv Detail & Related papers (2023-07-08T14:25:57Z) - Generative models improve fairness of medical classifiers under
distribution shifts [49.10233060774818]
We show that learning realistic augmentations automatically from data is possible in a label-efficient manner using generative models.
We demonstrate that these learned augmentations can surpass ones by making models more robust and statistically fair in- and out-of-distribution.
arXiv Detail & Related papers (2023-04-18T18:15:38Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.