論文の概要: InteractiveSurvey: An LLM-based Personalized and Interactive Survey Paper Generation System
- arxiv url: http://arxiv.org/abs/2504.08762v1
- Date: Mon, 31 Mar 2025 04:23:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-20 06:04:31.533897
- Title: InteractiveSurvey: An LLM-based Personalized and Interactive Survey Paper Generation System
- Title(参考訳): InteractiveSurvey: LLMに基づくパーソナライズされたインタラクティブな調査用紙生成システム
- Authors: Zhiyuan Wen, Jiannong Cao, Zian Wang, Beichen Guo, Ruosong Yang, Shuaiqi Liu,
- Abstract要約: 大規模言語モデル(LLM)と検索強化世代(RAG)は、複数の参照から調査論文を合成する研究を促進する。
本稿では,LLMに基づくパーソナライズされたインタラクティブな調査用紙生成システムであるInteractiveSurveyを紹介する。
- 参考スコア(独自算出の注目度): 29.924809109589518
- License:
- Abstract: The exponential growth of academic literature creates urgent demands for comprehensive survey papers, yet manual writing remains time-consuming and labor-intensive. Recent advances in large language models (LLMs) and retrieval-augmented generation (RAG) facilitate studies in synthesizing survey papers from multiple references, but most existing works restrict users to title-only inputs and fixed outputs, neglecting the personalized process of survey paper writing. In this paper, we introduce InteractiveSurvey - an LLM-based personalized and interactive survey paper generation system. InteractiveSurvey can generate structured, multi-modal survey papers with reference categorizations from multiple reference papers through both online retrieval and user uploads. More importantly, users can customize and refine intermediate components continuously during generation, including reference categorization, outline, and survey content through an intuitive interface. Evaluations of content quality, time efficiency, and user studies show that InteractiveSurvey is an easy-to-use survey generation system that outperforms most LLMs and existing methods in output content quality while remaining highly time-efficient.
- Abstract(参考訳): 学術文献の急激な成長は、総合的な調査論文に対する緊急の要求を生じさせるが、手書きの執筆は時間と労力がかかるままである。
近年の大規模言語モデル (LLM) と検索強化世代 (RAG) の進歩は, 調査論文を複数の参照から合成する研究を促進するが, 既存のほとんどの研究は, ユーザをタイトルのみの入力と固定出力に制限し, 調査論文のパーソナライズされたプロセスを無視している。
本稿では,LLMに基づくパーソナライズされたインタラクティブな調査用紙生成システムであるInteractiveSurveyを紹介する。
InteractiveSurveyは、オンライン検索とユーザアップロードの両方を通じて、複数の参照論文から参照分類された構造化されたマルチモーダルな調査論文を生成することができる。
さらに重要なのは、ユーザは、参照の分類、アウトライン、コンテンツを直感的なインターフェースで調査するなど、世代毎に中間コンポーネントを継続的にカスタマイズし、洗練することができることだ。
コンテンツ品質,時間効率,ユーザスタディの評価から,InteractiveSurveyは,ほとんどのLCMや既存の方法よりも高い性能を保ちながら,高い時間効率を保ちながら,アウトプット品質を向上する,使いやすいサーベイ生成システムであることが示された。
関連論文リスト
- Personalized Multimodal Large Language Models: A Survey [127.9521218125761]
マルチモーダル大言語モデル(MLLM)は、最先端の性能と複数のデータモダリティを統合する能力により、ますます重要になっている。
本稿では,パーソナライズされたマルチモーダルな大規模言語モデルに関する包括的調査を行い,そのアーキテクチャ,トレーニング方法,アプリケーションに焦点をあてる。
論文 参考訳(メタデータ) (2024-12-03T03:59:03Z) - Instruct Large Language Models to Generate Scientific Literature Survey Step by Step [21.149406605689297]
大規模言語モデル(LLM)を体系的に活用するプロンプトを設計する。
この設計はハイレベルの観点からの見出しの生成を可能にすると我々は主張する。
Qwen-long による実践は NLPCC 2024 で3位となった。
論文 参考訳(メタデータ) (2024-08-15T02:07:11Z) - Systematic Task Exploration with LLMs: A Study in Citation Text Generation [63.50597360948099]
大規模言語モデル(LLM)は、複雑な創造的自然言語生成(NLG)タスクの定義と実行において、前例のない柔軟性をもたらす。
本稿では,系統的な入力操作,参照データ,出力測定からなる3成分研究フレームワークを提案する。
我々はこのフレームワークを用いて引用テキスト生成を探索する。これは一般的なNLPタスクであり、タスク定義と評価基準に関するコンセンサスを欠いている。
論文 参考訳(メタデータ) (2024-07-04T16:41:08Z) - Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions [62.0123588983514]
大規模言語モデル(LLM)は様々な分野にまたがる幅広い応用を実証してきた。
我々は、ピアレビュープロセスを多ターン長文対話として再構築し、著者、レビュアー、意思決定者に対して異なる役割を担っている。
複数の情報源から収集された92,017件のレビューを含む26,841件の論文を含む包括的データセットを構築した。
論文 参考訳(メタデータ) (2024-06-09T08:24:17Z) - Enhancing Presentation Slide Generation by LLMs with a Multi-Staged End-to-End Approach [21.8104104944488]
ドキュメントからリッチなプレゼンテーションを生成するための既存のアプローチは、しばしば半自動的であるか、良い物語の重要性を無視してスライドに平らな要約を配置するだけである。
LLMとVLMを組み合わせた多段階のエンドツーエンドモデルを提案する。
我々は,LLMを最先端のプロンプトで直接適用するよりも,自動計測と人的評価の点で,提案した多段階ソリューションの方が優れていることを実験的に示した。
論文 参考訳(メタデータ) (2024-06-01T07:49:31Z) - LLMs Meet Multimodal Generation and Editing: A Survey [89.76691959033323]
本調査では,画像,ビデオ,3D,オーディオなど,さまざまな領域にわたるマルチモーダル生成と編集について詳述する。
これらの分野でのマイルストーンの成果を要約し、これらの研究をLLM法とCLIP/T5法に分類する。
我々は、既存の生成モデルを人間とコンピュータの相互作用に活用できるツール強化マルチモーダルエージェントを掘り下げる。
論文 参考訳(メタデータ) (2024-05-29T17:59:20Z) - PROXYQA: An Alternative Framework for Evaluating Long-Form Text Generation with Large Language Models [72.57329554067195]
ProxyQAは、長文生成を評価するための革新的なフレームワークである。
さまざまなドメインにまたがる詳細なヒューマンキュレートされたメタクエストで構成されており、それぞれに事前にアノテートされた回答を持つ特定のプロキシクエストが伴っている。
プロキシクエリに対処する際の評価器の精度を通じて、生成されたコンテンツの品質を評価する。
論文 参考訳(メタデータ) (2024-01-26T18:12:25Z) - Bridging Research and Readers: A Multi-Modal Automated Academic Papers
Interpretation System [47.13932723910289]
本稿では,3段階のプロセス段階を有するオープンソースマルチモーダル自動学術論文解釈システム(MMAPIS)を紹介する。
ドキュメントからプレーンテキストや表や図を別々に抽出するために、ハイブリッドなモダリティ前処理とアライメントモジュールを使用している。
すると、この情報は彼らが属するセクション名に基づいて調整され、同じセクション名を持つデータが同じセクションの下に分類される。
抽出されたセクション名を用いて、記事を短いテキストセグメントに分割し、LSMを通してセクション内とセクション間の特定の要約を容易にする。
論文 参考訳(メタデータ) (2024-01-17T11:50:53Z) - Tell Me How to Survey: Literature Review Made Simple with Automatic
Reading Path Generation [16.07200776251764]
論文を大量の文献から読めば、簡単な調査をしたり、特定の研究トピックに関する最新の進歩に遅れないようにする方法が課題になっている。
Google Scholarのような既存の学術検索エンジンは、各論文とクエリ間の関連性を個別に計算することで、関連論文を返す。
本稿では,あるクエリに対して読み込む論文のパスを自動生成することを目的とした読解パス生成(RPG)を紹介する。
論文 参考訳(メタデータ) (2021-10-12T20:58:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。