Estimating Item Difficulty Using Large Language Models and Tree-Based Machine Learning Algorithms
- URL: http://arxiv.org/abs/2504.08804v1
- Date: Wed, 09 Apr 2025 00:04:07 GMT
- Title: Estimating Item Difficulty Using Large Language Models and Tree-Based Machine Learning Algorithms
- Authors: Pooya Razavi, Sonya J. Powers,
- Abstract summary: Estimating item difficulty through field-testing is often resource-intensive and time-consuming.<n>The present research examines the feasibility of using an Large Language Models (LLMs) to predict item difficulty for K-5 mathematics and reading assessment items.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Estimating item difficulty through field-testing is often resource-intensive and time-consuming. As such, there is strong motivation to develop methods that can predict item difficulty at scale using only the item content. Large Language Models (LLMs) represent a new frontier for this goal. The present research examines the feasibility of using an LLM to predict item difficulty for K-5 mathematics and reading assessment items (N = 5170). Two estimation approaches were implemented: (a) a direct estimation method that prompted the LLM to assign a single difficulty rating to each item, and (b) a feature-based strategy where the LLM extracted multiple cognitive and linguistic features, which were then used in ensemble tree-based models (random forests and gradient boosting) to predict difficulty. Overall, direct LLM estimates showed moderate to strong correlations with true item difficulties. However, their accuracy varied by grade level, often performing worse for early grades. In contrast, the feature-based method yielded stronger predictive accuracy, with correlations as high as r = 0.87 and lower error estimates compared to both direct LLM predictions and baseline regressors. These findings highlight the promise of LLMs in streamlining item development and reducing reliance on extensive field testing and underscore the importance of structured feature extraction. We provide a seven-step workflow for testing professionals who would want to implement a similar item difficulty estimation approach with their item pool.
Related papers
- Dynamic Uncertainty Ranking: Enhancing Retrieval-Augmented In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
Large language models (LLMs) can learn vast amounts of knowledge from diverse domains during pre-training.
Long-tail knowledge from specialized domains is often scarce and underrepresented, rarely appearing in the models' memorization.
We propose a reinforcement learning-based dynamic uncertainty ranking method for ICL that accounts for the varying impact of each retrieved sample on LLM predictions.
arXiv Detail & Related papers (2024-10-31T03:42:17Z) - A Comprehensive Evaluation of Large Language Models on Temporal Event Forecasting [45.0261082985087]
We conduct a comprehensive evaluation of Large Language Models (LLMs) for temporal event forecasting.
We find that directly integrating raw texts into the input of LLMs does not enhance zero-shot extrapolation performance.
In contrast, incorporating raw texts in specific complex events and fine-tuning LLMs significantly improves performance.
arXiv Detail & Related papers (2024-07-16T11:58:54Z) - Raising the Bar: Investigating the Values of Large Language Models via Generative Evolving Testing [39.6507632134755]
We propose GETA, a novel generative evolving testing approach based on adaptive testing methods in measurement theory.<n> GETA probes the underlying moral boundaries of LLMs by dynamically generating test items tailored to model capability.<n> GETA co-evolves with LLMs by learning a joint distribution of item difficulty and model value conformity.
arXiv Detail & Related papers (2024-06-20T11:51:00Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Detecting Hallucinations in Large Language Model Generation: A Token Probability Approach [0.0]
Large Language Models (LLMs) produce inaccurate outputs, also known as hallucinations.
This paper introduces a supervised learning approach employing only four numerical features derived from tokens and vocabulary probabilities obtained from other evaluators.
The method yields promising results, surpassing state-of-the-art outcomes in multiple tasks across three different benchmarks.
arXiv Detail & Related papers (2024-05-30T03:00:47Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - Learning to Generate Explainable Stock Predictions using Self-Reflective
Large Language Models [54.21695754082441]
We propose a framework to teach Large Language Models (LLMs) to generate explainable stock predictions.
A reflective agent learns how to explain past stock movements through self-reasoning, while the PPO trainer trains the model to generate the most likely explanations.
Our framework can outperform both traditional deep-learning and LLM methods in prediction accuracy and Matthews correlation coefficient.
arXiv Detail & Related papers (2024-02-06T03:18:58Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Benchmarking Causal Study to Interpret Large Language Models for Source
Code [6.301373791541809]
This paper introduces a benchmarking strategy named Galeras comprised of curated testbeds for three SE tasks.
We illustrate the insights of our benchmarking strategy by conducting a case study on the performance of ChatGPT under distinct prompt engineering methods.
arXiv Detail & Related papers (2023-08-23T20:32:12Z) - Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis,
and LLMs Evaluations [111.88727295707454]
This paper reexamines the research on out-of-distribution (OOD) robustness in the field of NLP.
We propose a benchmark construction protocol that ensures clear differentiation and challenging distribution shifts.
We conduct experiments on pre-trained language models for analysis and evaluation of OOD robustness.
arXiv Detail & Related papers (2023-06-07T17:47:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.