Endowing Embodied Agents with Spatial Reasoning Capabilities for Vision-and-Language Navigation
- URL: http://arxiv.org/abs/2504.08806v1
- Date: Wed, 09 Apr 2025 02:19:22 GMT
- Title: Endowing Embodied Agents with Spatial Reasoning Capabilities for Vision-and-Language Navigation
- Authors: Luo Ling, Bai Qianqian,
- Abstract summary: We propose BrainNav, a bio-inspired spatial cognitive navigation framework inspired by biological spatial cognition theories and cognitive map theory.<n>BrainNav integrates dual-map (coordinate map and topological map) and dual-orientation (relative orientation and absolute orientation) strategies, enabling real-time navigation through dynamic scene capture and path planning.<n>Its five core modules-Hippocampal Memory Hub, Visual Cortex Perception Engine, Parietal Spatial Constructor, Prefrontal Decision Center, and Cerebellar Motion Execution Unit-mimic biological cognitive functions to reduce spatial hallucinations and enhance adaptability.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enhancing the spatial perception capabilities of mobile robots is crucial for achieving embodied Vision-and-Language Navigation (VLN). Although significant progress has been made in simulated environments, directly transferring these capabilities to real-world scenarios often results in severe hallucination phenomena, causing robots to lose effective spatial awareness. To address this issue, we propose BrainNav, a bio-inspired spatial cognitive navigation framework inspired by biological spatial cognition theories and cognitive map theory. BrainNav integrates dual-map (coordinate map and topological map) and dual-orientation (relative orientation and absolute orientation) strategies, enabling real-time navigation through dynamic scene capture and path planning. Its five core modules-Hippocampal Memory Hub, Visual Cortex Perception Engine, Parietal Spatial Constructor, Prefrontal Decision Center, and Cerebellar Motion Execution Unit-mimic biological cognitive functions to reduce spatial hallucinations and enhance adaptability. Validated in a zero-shot real-world lab environment using the Limo Pro robot, BrainNav, compatible with GPT-4, outperforms existing State-of-the-Art (SOTA) Vision-and-Language Navigation in Continuous Environments (VLN-CE) methods without fine-tuning.
Related papers
- EDEN: Entorhinal Driven Egocentric Navigation Toward Robotic Deployment [1.5190286092106713]
EDEN is a biologically inspired navigation framework that integrates learned entorhinal-like grid cell representations and reinforcement learning to enable autonomous navigation.<n>Inspired by the mammalian entorhinal-hippocampal system, EDEN allows agents to perform path integration and vector-based navigation using visual and motion sensor data.
arXiv Detail & Related papers (2025-06-03T16:28:33Z) - Cog-GA: A Large Language Models-based Generative Agent for Vision-Language Navigation in Continuous Environments [19.818370526976974]
Vision Language Navigation in Continuous Environments (VLN-CE) represents a frontier in embodied AI.
We introduce Cog-GA, a generative agent founded on large language models (LLMs) tailored for VLN-CE tasks.
Cog-GA employs a dual-pronged strategy to emulate human-like cognitive processes.
arXiv Detail & Related papers (2024-09-04T08:30:03Z) - IN-Sight: Interactive Navigation through Sight [20.184155117341497]
IN-Sight is a novel approach to self-supervised path planning.
It calculates traversability scores and incorporates them into a semantic map.
To precisely navigate around obstacles, IN-Sight employs a local planner.
arXiv Detail & Related papers (2024-08-01T07:27:54Z) - Vision and Language Navigation in the Real World via Online Visual
Language Mapping [18.769171505280127]
Vision-and-language navigation (VLN) methods are mainly evaluated in simulation.
We propose a novel framework to address the VLN task in the real world.
We evaluate the proposed pipeline on an Interbotix LoCoBot WX250 in an unseen lab environment.
arXiv Detail & Related papers (2023-10-16T20:44:09Z) - Learning Navigational Visual Representations with Semantic Map
Supervision [85.91625020847358]
We propose a navigational-specific visual representation learning method by contrasting the agent's egocentric views and semantic maps.
Ego$2$-Map learning transfers the compact and rich information from a map, such as objects, structure and transition, to the agent's egocentric representations for navigation.
arXiv Detail & Related papers (2023-07-23T14:01:05Z) - CorNav: Autonomous Agent with Self-Corrected Planning for Zero-Shot Vision-and-Language Navigation [73.78984332354636]
CorNav is a novel zero-shot framework for vision-and-language navigation.
It incorporates environmental feedback for refining future plans and adjusting its actions.
It consistently outperforms all baselines in a zero-shot multi-task setting.
arXiv Detail & Related papers (2023-06-17T11:44:04Z) - Bio-inspired spike-based Hippocampus and Posterior Parietal Cortex
models for robot navigation and environment pseudo-mapping [52.77024349608834]
This work proposes a spike-based robotic navigation and environment pseudomapping system.
The hippocampus is in charge of maintaining a representation of an environment state map, and the PPC is in charge of local decision-making.
This is the first implementation of an environment pseudo-mapping system with dynamic learning based on a bio-inspired hippocampal memory.
arXiv Detail & Related papers (2023-05-22T10:20:34Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments.
We propose ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments.
ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets.
arXiv Detail & Related papers (2023-04-06T13:07:17Z) - Emergence of Maps in the Memories of Blind Navigation Agents [68.41901534985575]
Animal navigation research posits that organisms build and maintain internal spatial representations, or maps, of their environment.
We ask if machines -- specifically, artificial intelligence (AI) navigation agents -- also build implicit (or'mental') maps.
Unlike animal navigation, we can judiciously design the agent's perceptual system and control the learning paradigm to nullify alternative navigation mechanisms.
arXiv Detail & Related papers (2023-01-30T20:09:39Z) - Learning Synthetic to Real Transfer for Localization and Navigational
Tasks [7.019683407682642]
Navigation is at the crossroad of multiple disciplines, it combines notions of computer vision, robotics and control.
This work aimed at creating, in a simulation, a navigation pipeline whose transfer to the real world could be done with as few efforts as possible.
To design the navigation pipeline four main challenges arise; environment, localization, navigation and planning.
arXiv Detail & Related papers (2020-11-20T08:37:03Z) - Visual Navigation Among Humans with Optimal Control as a Supervisor [72.5188978268463]
We propose an approach that combines learning-based perception with model-based optimal control to navigate among humans.
Our approach is enabled by our novel data-generation tool, HumANav.
We demonstrate that the learned navigation policies can anticipate and react to humans without explicitly predicting future human motion.
arXiv Detail & Related papers (2020-03-20T16:13:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.