Artificial Intelligence (AI) and the Relationship between Agency, Autonomy, and Moral Patiency
- URL: http://arxiv.org/abs/2504.08853v1
- Date: Fri, 11 Apr 2025 03:48:40 GMT
- Title: Artificial Intelligence (AI) and the Relationship between Agency, Autonomy, and Moral Patiency
- Authors: Paul Formosa, Inês Hipólito, Thomas Montefiore,
- Abstract summary: We argue that while current AI systems are highly sophisticated, they lack genuine agency and autonomy.<n>We do not rule out the possibility of future systems that could achieve a limited form of artificial moral agency without consciousness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The proliferation of Artificial Intelligence (AI) systems exhibiting complex and seemingly agentive behaviours necessitates a critical philosophical examination of their agency, autonomy, and moral status. In this paper we undertake a systematic analysis of the differences between basic, autonomous, and moral agency in artificial systems. We argue that while current AI systems are highly sophisticated, they lack genuine agency and autonomy because: they operate within rigid boundaries of pre-programmed objectives rather than exhibiting true goal-directed behaviour within their environment; they cannot authentically shape their engagement with the world; and they lack the critical self-reflection and autonomy competencies required for full autonomy. Nonetheless, we do not rule out the possibility of future systems that could achieve a limited form of artificial moral agency without consciousness through hybrid approaches to ethical decision-making. This leads us to suggest, by appealing to the necessity of consciousness for moral patiency, that such non-conscious AMAs might represent a case that challenges traditional assumptions about the necessary connection between moral agency and moral patiency.
Related papers
- Alignment, Agency and Autonomy in Frontier AI: A Systems Engineering Perspective [0.0]
Concepts of alignment, agency, and autonomy have become central to AI safety, governance, and control.
This paper traces the historical, philosophical, and technical evolution of these concepts, emphasizing how their definitions influence AI development, deployment, and oversight.
arXiv Detail & Related papers (2025-02-20T21:37:20Z) - Agentic AI: Autonomy, Accountability, and the Algorithmic Society [0.2209921757303168]
Agentic Artificial Intelligence (AI) can autonomously pursue long-term goals, make decisions, and execute complex, multi-turn.<n>This transition from advisory roles to proactive execution challenges established legal, economic, and creative frameworks.<n>We explore challenges in three interrelated domains: creativity and intellectual property, legal and ethical considerations, and competitive effects.
arXiv Detail & Related papers (2025-02-01T03:14:59Z) - Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground [55.2480439325792]
I argue that efforts to promote responsible and ethical AI can inadvertently contribute to and seemingly legitimize this disregard for established contextual norms.<n>I question the current narrow prioritization in AI ethics of moral innovation over moral preservation.
arXiv Detail & Related papers (2024-12-06T15:36:13Z) - Delegating Responsibilities to Intelligent Autonomous Systems: Challenges and Benefits [1.7205106391379026]
As AI systems operate with autonomy and adaptability, the traditional boundaries of moral responsibility in techno-social systems are being challenged.<n>This paper explores the evolving discourse on the delegation of responsibilities to intelligent autonomous agents and the ethical implications of such practices.
arXiv Detail & Related papers (2024-11-06T18:40:38Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Beneficent Intelligence: A Capability Approach to Modeling Benefit,
Assistance, and Associated Moral Failures through AI Systems [12.239090962956043]
The prevailing discourse around AI ethics lacks the language and formalism necessary to capture the diverse ethical concerns that emerge when AI systems interact with individuals.
We present a framework formalizing a network of ethical concepts and entitlements necessary for AI systems to confer meaningful benefit or assistance to stakeholders.
arXiv Detail & Related papers (2023-08-01T22:38:14Z) - Reflective Hybrid Intelligence for Meaningful Human Control in
Decision-Support Systems [4.1454448964078585]
We introduce the notion of self-reflective AI systems for meaningful human control over AI systems.
We propose a framework that integrates knowledge from psychology and philosophy with formal reasoning methods and machine learning approaches.
We argue that self-reflective AI systems can lead to self-reflective hybrid systems (human + AI)
arXiv Detail & Related papers (2023-07-12T13:32:24Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.