Hardware Design and Security Needs Attention: From Survey to Path Forward
- URL: http://arxiv.org/abs/2504.08854v1
- Date: Fri, 11 Apr 2025 03:48:57 GMT
- Title: Hardware Design and Security Needs Attention: From Survey to Path Forward
- Authors: Sujan Ghimire, Muhtasim Alam Chowdhury, Banafsheh Saber Latibari, Muntasir Mamun, Jaeden Wolf Carpenter, Benjamin Tan, Hammond Pearce, Pratik Satam, Soheil Salehi,
- Abstract summary: Recent advances in attention-based artificial intelligence (AI) models have unlocked vast potential to automate digital hardware design.<n>This study explores the commercial and academic landscape, highlighting technical hurdles and future prospects for automating hardware design and security.
- Score: 8.165279651848923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in attention-based artificial intelligence (AI) models have unlocked vast potential to automate digital hardware design while enhancing and strengthening security measures against various threats. This rapidly emerging field leverages Large Language Models (LLMs) to generate HDL code, identify vulnerabilities, and sometimes mitigate them. The state of the art in this design automation space utilizes optimized LLMs with HDL datasets, creating automated systems for register-transfer level (RTL) generation, verification, and debugging, and establishing LLM-driven design environments for streamlined logic designs. Additionally, attention-based models like graph attention have shown promise in chip design applications, including floorplanning. This survey investigates the integration of these models into hardware-related domains, emphasizing logic design and hardware security, with or without the use of IP libraries. This study explores the commercial and academic landscape, highlighting technical hurdles and future prospects for automating hardware design and security. Moreover, it provides new insights into the study of LLM-driven design systems, advances in hardware security mechanisms, and the impact of influential works on industry practices. Through the examination of 30 representative approaches and illustrative case studies, this paper underscores the transformative potential of attention-based models in revolutionizing hardware design while addressing the challenges that lie ahead in this interdisciplinary domain.
Related papers
- Exploring Code Language Models for Automated HLS-based Hardware Generation: Benchmark, Infrastructure and Analysis [14.458529723566379]
Large language models (LLMs) can be employed for programming languages such as Python and C++.<n>This paper explores leveraging LLMs to generate High-Level Synthesis (HLS)-based hardware design.
arXiv Detail & Related papers (2025-02-19T17:53:59Z) - Toward Neurosymbolic Program Comprehension [46.874490406174644]
We advocate for a Neurosymbolic research direction that combines the strengths of existing DL techniques with traditional symbolic methods.
We present preliminary results for our envisioned approach, aimed at establishing the first Neurosymbolic Program framework.
arXiv Detail & Related papers (2025-02-03T20:38:58Z) - A quantitative framework for evaluating architectural patterns in ML systems [49.1574468325115]
This study proposes a framework for quantitative assessment of architectural patterns in ML systems.<n>We focus on scalability and performance metrics for cost-effective CPU-based inference.
arXiv Detail & Related papers (2025-01-20T15:30:09Z) - Requirements Engineering for a Web-based Research, Technology & Innovation Monitoring Tool [46.38386372048799]
We introduce a requirements engineering process to identify stakeholders and elicitate requirements for a web-based interactive and open-access RTI system monitoring tool.
Based on several core modules, we introduce a multi-tier software architecture of how such a tool is generally implemented from the perspective of software engineers.
A cornerstone of this architecture is the user-facing dashboard module.
arXiv Detail & Related papers (2025-01-18T20:36:26Z) - A Survey: Collaborative Hardware and Software Design in the Era of Large Language Models [16.250856588632637]
The rapid development of large language models (LLMs) has significantly transformed the field of artificial intelligence.
These models are increasingly integrated into diverse applications, impacting both research and industry.
This paper surveys hardware and software co-design approaches specifically tailored to address the unique characteristics and constraints of large language models.
arXiv Detail & Related papers (2024-10-08T21:46:52Z) - Evolutionary Large Language Models for Hardware Security: A Comparative Survey [0.4642370358223669]
This study explores the seeds of Large Language Models (LLMs) integration in register transfer level (RTL) designs.
LLMs can be harnessed to automatically rectify security-relevant vulnerabilities inherent in HW designs.
arXiv Detail & Related papers (2024-04-25T14:42:12Z) - LLM4SecHW: Leveraging Domain Specific Large Language Model for Hardware
Debugging [4.297043877989406]
This paper presents a novel framework for hardware debug that leverages domain specific Large Language Model (LLM)
We propose a unique approach to compile a dataset of open source hardware design defects and their remediation steps.
LLM4SecHW employs fine tuning of medium sized LLMs based on this dataset, enabling the identification and rectification of bugs in hardware designs.
arXiv Detail & Related papers (2024-01-28T19:45:25Z) - LLM4EDA: Emerging Progress in Large Language Models for Electronic
Design Automation [74.7163199054881]
Large Language Models (LLMs) have demonstrated their capability in context understanding, logic reasoning and answer generation.
We present a systematic study on the application of LLMs in the EDA field.
We highlight the future research direction, focusing on applying LLMs in logic synthesis, physical design, multi-modal feature extraction and alignment of circuits.
arXiv Detail & Related papers (2023-12-28T15:09:14Z) - A Survey of Serverless Machine Learning Model Inference [0.0]
Generative AI, Computer Vision, and Natural Language Processing have led to an increased integration of AI models into various products.
This survey aims to summarize and categorize the emerging challenges and optimization opportunities for large-scale deep learning serving systems.
arXiv Detail & Related papers (2023-11-22T18:46:05Z) - Design Automation for Fast, Lightweight, and Effective Deep Learning
Models: A Survey [53.258091735278875]
This survey covers studies of design automation techniques for deep learning models targeting edge computing.
It offers an overview and comparison of key metrics that are used commonly to quantify the proficiency of models in terms of effectiveness, lightness, and computational costs.
The survey proceeds to cover three categories of the state-of-the-art of deep model design automation techniques.
arXiv Detail & Related papers (2022-08-22T12:12:43Z) - A Survey and Perspective on Artificial Intelligence for Security-Aware
Electronic Design Automation [6.496603310407321]
We summarize the state-of-the-art in AL/ML for circuit design/optimization, security and engineering challenges, research in security-aware CAD/EDA, and future research directions.
arXiv Detail & Related papers (2022-04-19T17:46:39Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.