A Survey and Perspective on Artificial Intelligence for Security-Aware
Electronic Design Automation
- URL: http://arxiv.org/abs/2204.09579v2
- Date: Thu, 21 Apr 2022 03:01:40 GMT
- Title: A Survey and Perspective on Artificial Intelligence for Security-Aware
Electronic Design Automation
- Authors: David Selasi Koblah, Rabin Yu Acharya, Daniel Capecci, Olivia P.
Dizon-Paradis, Shahin Tajik, Fatemeh Ganji, Damon L. Woodard, Domenic Forte
- Abstract summary: We summarize the state-of-the-art in AL/ML for circuit design/optimization, security and engineering challenges, research in security-aware CAD/EDA, and future research directions.
- Score: 6.496603310407321
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) and machine learning (ML) techniques have been
increasingly used in several fields to improve performance and the level of
automation. In recent years, this use has exponentially increased due to the
advancement of high-performance computing and the ever increasing size of data.
One of such fields is that of hardware design; specifically the design of
digital and analog integrated circuits~(ICs), where AI/ ML techniques have been
extensively used to address ever-increasing design complexity, aggressive
time-to-market, and the growing number of ubiquitous interconnected devices
(IoT). However, the security concerns and issues related to IC design have been
highly overlooked. In this paper, we summarize the state-of-the-art in AL/ML
for circuit design/optimization, security and engineering challenges, research
in security-aware CAD/EDA, and future research directions and needs for using
AI/ML for security-aware circuit design.
Related papers
- Using the Abstract Computer Architecture Description Language to Model
AI Hardware Accelerators [77.89070422157178]
Manufacturers of AI-integrated products face a critical challenge: selecting an accelerator that aligns with their product's performance requirements.
The Abstract Computer Architecture Description Language (ACADL) is a concise formalization of computer architecture block diagrams.
In this paper, we demonstrate how to use the ACADL to model AI hardware accelerators, use their ACADL description to map DNNs onto them, and explain the timing simulation semantics to gather performance results.
arXiv Detail & Related papers (2024-01-30T19:27:16Z) - LLM4EDA: Emerging Progress in Large Language Models for Electronic
Design Automation [74.7163199054881]
Large Language Models (LLMs) have demonstrated their capability in context understanding, logic reasoning and answer generation.
We present a systematic study on the application of LLMs in the EDA field.
We highlight the future research direction, focusing on applying LLMs in logic synthesis, physical design, multi-modal feature extraction and alignment of circuits.
arXiv Detail & Related papers (2023-12-28T15:09:14Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - Design Automation for Fast, Lightweight, and Effective Deep Learning
Models: A Survey [53.258091735278875]
This survey covers studies of design automation techniques for deep learning models targeting edge computing.
It offers an overview and comparison of key metrics that are used commonly to quantify the proficiency of models in terms of effectiveness, lightness, and computational costs.
The survey proceeds to cover three categories of the state-of-the-art of deep model design automation techniques.
arXiv Detail & Related papers (2022-08-22T12:12:43Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - AI/ML Algorithms and Applications in VLSI Design and Technology [3.1171750528972204]
This paper reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing.
We discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design.
arXiv Detail & Related papers (2022-02-21T07:01:27Z) - Analog/Mixed-Signal Circuit Synthesis Enabled by the Advancements of
Circuit Architectures and Machine Learning Algorithms [0.0]
We will focus on using neural-network-based surrogate models to expedite the circuit design parameter search and layout iterations.
Lastly, we will demonstrate the rapid synthesis of several AMS circuit examples from specification to silicon prototype, with significantly reduced human intervention.
arXiv Detail & Related papers (2021-12-15T01:47:08Z) - Enabling Design Methodologies and Future Trends forEdge AI:
Specialization and Co-design [37.54971466190214]
We provide a comprehensive survey of the latest enabling design methodologies that span the entire edge AI development stack.
We suggest that the key methodologies for effective edge AI development are single-layer specialization and cross-layer co-design.
arXiv Detail & Related papers (2021-03-25T16:29:55Z) - The Why, What and How of Artificial General Intelligence Chip
Development [0.0]
The intelligent sensing, automation, and edge computing applications have been the market drivers for AI chips.
The generalisation, performance, robustness, and scalability of the AI chip solutions are compared with human-like intelligence abilities.
arXiv Detail & Related papers (2020-12-08T02:36:04Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.