論文の概要: Forecasting Communication Derailments Through Conversation Generation
- arxiv url: http://arxiv.org/abs/2504.08905v1
- Date: Fri, 11 Apr 2025 18:15:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:53:13.912753
- Title: Forecasting Communication Derailments Through Conversation Generation
- Title(参考訳): 対話生成による通信脱線予測
- Authors: Yunfan Zhang, Kathleen McKeown, Smaranda Muresan,
- Abstract要約: 我々は,将来の通信脱線予測のための微調整モデルを開発した。
提案手法は,英語通信脱線予測ベンチマークの最先端結果を上回った。
- 参考スコア(独自算出の注目度): 28.51849747967488
- License:
- Abstract: Forecasting communication derailment can be useful in real-world settings such as online content moderation, conflict resolution, and business negotiations. However, despite language models' success at identifying offensive speech present in conversations, they struggle to forecast future communication derailments. In contrast to prior work that predicts conversation outcomes solely based on the past conversation history, our approach samples multiple future conversation trajectories conditioned on existing conversation history using a fine-tuned LLM. It predicts the communication outcome based on the consensus of these trajectories. We also experimented with leveraging socio-linguistic attributes, which reflect turn-level conversation dynamics, as guidance when generating future conversations. Our method of future conversation trajectories surpasses state-of-the-art results on English communication derailment prediction benchmarks and demonstrates significant accuracy gains in ablation studies.
- Abstract(参考訳): 予測通信の脱線は、オンラインコンテンツモデレーション、コンフリクト解決、ビジネス交渉のような現実世界の設定で有用である。
しかし、言語モデルが会話に含まれる攻撃的スピーチを特定することに成功しているにもかかわらず、彼らは将来のコミュニケーション障害を予測するのに苦労している。
過去の会話履歴にのみ基づく会話結果を予測する先行研究とは対照的に,本手法では,既存の会話履歴に規定された複数の未来の会話軌跡を,微調整のLLMを用いてサンプリングする。
これらの軌道のコンセンサスに基づいて通信結果を予測する。
また,将来的な会話を生成する際の指導として,ターンレベルの会話のダイナミクスを反映した社会言語特性の活用を試みた。
提案手法は,英語コミュニケーション脱線予測ベンチマークの最先端結果を上回っ,アブレーション研究において有意な精度向上を示す。
関連論文リスト
- WavChat: A Survey of Spoken Dialogue Models [66.82775211793547]
GPT-4oのようなシステムで実証された音声対話モデルの最近の進歩は、音声領域において大きな注目を集めている。
これらの高度な音声対話モデルは、音声、音楽、その他の音声関連の特徴を理解するだけでなく、音声のスタイリスティックな特徴や音節的な特徴も捉える。
音声対話システムの進歩にもかかわらず、これらのシステムを体系的に組織化し分析する包括的調査が欠如している。
論文 参考訳(メタデータ) (2024-11-15T04:16:45Z) - Knowledge-Aware Conversation Derailment Forecasting Using Graph Convolutional Networks [5.571668670990489]
我々は,対話文脈情報の知識ベースからコモンセンス文を導出し,グラフニューラルネットワークの分類アーキテクチャを充実させる。
我々は,発話のマルチソース情報をカプセルに融合し,会話の脱線を予測するためにトランスフォーマーベースの予測器が使用する。
我々のモデルは,CGAおよびCMVベンチマークデータセットの最先端モデルよりも優れ,会話のダイナミクスと文脈の伝播を捉えている。
論文 参考訳(メタデータ) (2024-08-24T02:40:28Z) - How Did We Get Here? Summarizing Conversation Dynamics [4.644319899528183]
本稿では,人文要約のデータセットを構築し,会話のダイナミクスを要約するタスクを紹介する。
このような要約が、確立された下流タスクを介して会話の軌跡を捉えることができるかどうかを評価する。
この予測タスクでは,人間と自動化システムの両方が有効であることを示す。
論文 参考訳(メタデータ) (2024-04-29T18:00:03Z) - AutoConv: Automatically Generating Information-seeking Conversations
with Large Language Models [74.10293412011455]
合成会話生成のためのAutoConvを提案する。
具体的には,会話生成問題を言語モデリングタスクとして定式化する。
我々は、情報探索プロセスの特徴を捉えるために、人間同士の会話でLLMを微調整する。
論文 参考訳(メタデータ) (2023-08-12T08:52:40Z) - Conversation Derailment Forecasting with Graph Convolutional Networks [6.251188655534379]
本稿では,対話型ユーザダイナミクスと,会話発話に対する公衆認識の影響を考慮した,グラフ畳み込みニューラルネットワークに基づく新しいモデルを提案する。
提案モデルでは,CGAとCMVのベンチマークデータセットにおいて,会話のダイナミクスを効果的に把握し,最先端のモデルをそれぞれ1.5%,1.7%向上させる。
論文 参考訳(メタデータ) (2023-06-22T15:40:59Z) - Controllable Mixed-Initiative Dialogue Generation through Prompting [50.03458333265885]
混合開始対話タスクには、情報の繰り返し交換と会話制御が含まれる。
エージェントは、ポリシープランナーが定める特定の対話意図や戦略に従う応答を生成することにより、コントロールを得る。
標準的なアプローチは、これらの意図に基づいて生成条件を実行するために、訓練済みの言語モデルを微調整している。
代わりに、条件生成の微調整に代えて、大きな言語モデルをドロップインで置き換えるように促します。
論文 参考訳(メタデータ) (2023-05-06T23:11:25Z) - Conversation Modeling to Predict Derailment [15.45515784064555]
進行中の会話が脱線する可能性があるかどうかを予測する能力は、インターロケータやモデレーターに貴重なリアルタイム洞察を提供する可能性がある。
会話が発達するにつれて動的予測を試みようとする研究もあるが、会話構造や脱線距離といった多元的情報を組み込むことは困難である。
本稿では,発話レベルと会話レベルの情報を組み合わせた階層型トランスフォーマーベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-20T15:10:45Z) - FCTalker: Fine and Coarse Grained Context Modeling for Expressive
Conversational Speech Synthesis [75.74906149219817]
Conversational Text-to-Speech (TTS) は、会話の文脈において、適切な言語的・感情的な韻律で発話を合成することを目的としている。
本稿では, 音声生成時に, 微細で粗い文脈依存性を同時に学習する, FCTalkerと呼ばれる新しい表現型会話型TSモデルを提案する。
論文 参考訳(メタデータ) (2022-10-27T12:20:20Z) - Conversational speech recognition leveraging effective fusion methods
for cross-utterance language modeling [12.153618111267514]
音声認識における言語モデリングのための異種会話履歴融合手法を提案する。
現在の発話の音響埋め込みとそれに対応する会話履歴のセマンティックコンテンツとを融合して利用する新しい音声融合機構が導入された。
我々は,ASR N-best仮説再構成タスクを予測問題として,象徴的な事前学習型LMであるBERTを活用する。
論文 参考訳(メタデータ) (2021-11-05T09:07:23Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
本研究は、音声タスク指向会話における新しいベンチマークを示す。
マルチドメイン対話状態追跡と知識基底型対話モデルについて検討する。
我々のデータセットは,タスク指向対話システムの音声によるベンチマークを可能にする。
論文 参考訳(メタデータ) (2021-09-28T04:51:04Z) - Who Responded to Whom: The Joint Effects of Latent Topics and Discourse
in Conversation Structure [53.77234444565652]
会話談話における応答関係を同定し,会話の開始に応答発話をリンクする。
単語分布における潜在トピックと会話を学習し,ペアワイズ開始応答リンクを予測するモデルを提案する。
英語と中国語の会話における実験結果から,我々のモデルは過去の芸術の状況を大きく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T17:46:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。