論文の概要: Improving the evaluation of samplers on multi-modal targets
- arxiv url: http://arxiv.org/abs/2504.08916v1
- Date: Fri, 11 Apr 2025 18:47:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:55:06.019627
- Title: Improving the evaluation of samplers on multi-modal targets
- Title(参考訳): マルチモーダルターゲットにおけるサンプリング器の評価改善
- Authors: Louis Grenioux, Maxence Noble, Marylou Gabrié,
- Abstract要約: 我々は,モード分離と寸法の2つの難点に対するサンプリング器のより体系的な評価を提唱する。
これらの評価は、多モード性を扱うサンプルの可能性を診断し、フィールドの進歩を促進するために重要である。
- 参考スコア(独自算出の注目度): 2.335954070711608
- License:
- Abstract: Addressing multi-modality constitutes one of the major challenges of sampling. In this reflection paper, we advocate for a more systematic evaluation of samplers towards two sources of difficulty that are mode separation and dimension. For this, we propose a synthetic experimental setting that we illustrate on a selection of samplers, focusing on the challenging criterion of recovery of the mode relative importance. These evaluations are crucial to diagnose the potential of samplers to handle multi-modality and therefore to drive progress in the field.
- Abstract(参考訳): マルチモーダリティ(multi-modality)に対処することは、サンプリングの大きな課題のひとつだ。
本稿では,モード分離と寸法の2つの難点に対するサンプリング器のより体系的な評価を提唱する。
そこで本研究では, サンプルの選別を主眼とした合成実験を行い, モードの相対的重要性の回復の困難さに着目した。
これらの評価は、多モード性を扱うサンプルの可能性を診断し、フィールドの進歩を促進するために重要である。
関連論文リスト
- Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling [14.668634411361307]
標準化されたタスクスイートと幅広い性能基準を用いてサンプリング手法を評価するベンチマークを導入する。
モード崩壊の定量化のための既存のメトリクスについて検討し、この目的のために新しいメトリクスを導入する。
論文 参考訳(メタデータ) (2024-06-11T16:23:33Z) - Diversified Batch Selection for Training Acceleration [68.67164304377732]
オンラインバッチ選択として知られる一般的な研究ラインでは、トレーニングプロセス中の情報サブセットの選択について検討している。
バニラ参照モデルフリーメソッドは、独立してデータをサンプリング的にスコア付けし、選択する。
DivBS(Diversified Batch Selection)を提案する。
論文 参考訳(メタデータ) (2024-06-07T12:12:20Z) - Propensity Score Alignment of Unpaired Multimodal Data [3.8373578956681555]
マルチモーダル表現学習技術は通常、共通の表現を学ぶためにペア化されたサンプルに依存する。
本稿では,マルチモーダル表現学習において,異なるモダリティにまたがるアンペア化サンプルの整列化という課題に対処するアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-02T02:36:21Z) - Retrieval-augmented Multi-modal Chain-of-Thoughts Reasoning for Large
Language Models [56.256069117502385]
Chain of Thought (CoT)アプローチは、複雑な推論タスクにおいて、LLM(Large Language Models)の能力を高めるために使用できる。
しかし、マルチモーダル推論における最適なCoT実例の選択は、まだ検討されていない。
本稿では,この課題に対処する新しい手法として,検索機構を用いて実演例を自動的に選択する手法を提案する。
論文 参考訳(メタデータ) (2023-12-04T08:07:21Z) - Touring sampling with pushforward maps [3.5897534810405403]
本稿では、生成モデル設定における多くのサンプリングアプローチをレビューし、整理するために理論的スタンスをとる。
拡散モデルを用いたサンプリングにおける現在の課題のいくつかを克服するのに役立つかもしれない。
論文 参考訳(メタデータ) (2023-11-23T08:23:43Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Diffusion-based Visual Counterfactual Explanations -- Towards Systematic
Quantitative Evaluation [64.0476282000118]
視覚的対物的説明法(VCE)の最新手法は、深い生成モデルの力を利用して、印象的な画質の高次元画像の新しい例を合成する。
評価手順が大きく異なり,個々の実例の視覚検査や小規模なユーザスタディなど,これらのVCE手法の性能を比較することは,現時点では困難である。
本稿では,VCE手法の体系的,定量的評価のためのフレームワークと,使用する指標の最小セットを提案する。
論文 参考訳(メタデータ) (2023-08-11T12:22:37Z) - Sampling Through the Lens of Sequential Decision Making [9.101505546901999]
我々はアダプティブ・サンプル・ウィズ・リワード(ASR)と呼ばれる報酬誘導型サンプリング戦略を提案する。
提案手法は,サンプリング過程を最適に調整し,最適性能を実現する。
情報検索とクラスタリングの実証的な結果は、異なるデータセット間でのASRのスーパーブパフォーマンスを示している。
論文 参考訳(メタデータ) (2022-08-17T04:01:29Z) - Increasing Data Diversity with Iterative Sampling to Improve Performance [0.0]
本稿では,反復サンプリングによるトレーニングサンプルの多様性向上のためのデータ中心アプローチを提案する。
難易度の高いクラスにより多くのサンプルを導入することで、パフォーマンスをさらに向上する。
論文 参考訳(メタデータ) (2021-11-05T22:27:53Z) - Rethinking Sampling Strategies for Unsupervised Person Re-identification [59.47536050785886]
我々は,同じフレームワーク下での各種サンプリング戦略と損失関数のパフォーマンス差の理由を解析した。
グループサンプリングを提案し、同じクラスのサンプルをグループに集める。
Market-1501、DukeMTMC-reID、MSMT17の実験は、グループサンプリングが最先端の手法に匹敵する性能を達成することを示した。
論文 参考訳(メタデータ) (2021-07-07T05:39:58Z) - Optimal Off-Policy Evaluation from Multiple Logging Policies [77.62012545592233]
我々は,複数のロギングポリシからオフ政治評価を行い,それぞれが一定のサイズ,すなわち階層化サンプリングのデータセットを生成する。
複数ロガーのOPE推定器は,任意のインスタンス,すなわち効率のよいインスタンスに対して最小分散である。
論文 参考訳(メタデータ) (2020-10-21T13:43:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。