論文の概要: Exploring the Effects of Load Altering Attacks on Load Frequency Control through Python and RTDS
- arxiv url: http://arxiv.org/abs/2504.08951v1
- Date: Fri, 11 Apr 2025 20:07:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:48:03.400111
- Title: Exploring the Effects of Load Altering Attacks on Load Frequency Control through Python and RTDS
- Title(参考訳): PythonとRTDSによる負荷周波数制御における負荷変動攻撃の影響の探索
- Authors: Michał Forystek, Andrew D. Syrmakesis, Alkistis Kontou, Panos Kotsampopoulos, Nikos D. Hatziargyriou, Charalambos Konstantinou,
- Abstract要約: 負荷プロファイルを操作するために高ワット装置のボットネットを使用する負荷変更攻撃(LAA)は、グリッド安定性に対する顕著な脅威である。
本研究では,静的および動的シナリオのシミュレーションを通じて,負荷周波数制御(LFC)におけるLAAの影響を分析することにより,ギャップを橋渡しする。
その結果、LAAが周波数安定性に与える影響を強調し、動的LAAに対する固有値に基づく安定性評価を示す。
- 参考スコア(独自算出の注目度): 1.1662899857778717
- License:
- Abstract: The modern power grid increasingly depends on advanced information and communication technology (ICT) systems to enhance performance and reliability through real-time monitoring, intelligent control, and bidirectional communication. However, ICT integration also exposes the grid to cyber-threats. Load altering attacks (LAAs), which use botnets of high-wattage devices to manipulate load profiles, are a notable threat to grid stability. While previous research has examined LAAs, their specific impact on load frequency control (LFC), critical for maintaining nominal frequency during load fluctuations, still needs to be explored. Even minor frequency deviations can jeopardize grid operations. This study bridges the gap by analyzing LAA effects on LFC through simulations of static and dynamic scenarios using Python and RTDS. The results highlight LAA impacts on frequency stability and present an eigenvalue-based stability assessment for dynamic LAAs (DLAAs), identifying key parameters influencing grid resilience.
- Abstract(参考訳): 現代の電力網は、リアルタイム監視、インテリジェント制御、双方向通信による性能と信頼性を高めるために、高度な情報通信技術(ICT)システムに依存している。
しかし、ICT統合はまた、グリッドをサイバー脅威にさらしている。
負荷プロファイルを操作するために高ワット装置のボットネットを使用する負荷変更攻撃(LAA)は、グリッド安定性に対する顕著な脅威である。
従来の研究では、ロード周波数制御(LFC)への具体的な影響は、負荷変動の間、名目的な周波数を維持するために重要であるが、まだ検討する必要がある。
わずかな周波数偏差でさえ、グリッド操作を危険にさらすことがある。
本研究では,Python と RTDS を用いた静的シナリオと動的シナリオのシミュレーションを通じて LFC の LAA 効果を解析することにより,そのギャップを埋める。
その結果、周波数安定性にLAAが与える影響を強調し、動的LAA(DLAA)に対する固有値に基づく安定性評価を行い、グリッドレジリエンスに影響を及ぼす重要なパラメータを同定した。
関連論文リスト
- Transformer-Based Fault-Tolerant Control for Fixed-Wing UAVs Using Knowledge Distillation and In-Context Adaptation [3.1498833540989413]
本研究では, 固定翼無人航空機(UAV)の耐故障性制御のための変圧器を用いたアプローチを提案する。
提案手法は,変換器の学習機構と注意機構を用いて,外部ループ参照値を制御コマンドに直接マッピングする。
実験結果から, トランスフォーマーをベースとした制御器は, 業界標準SFSおよび最先端強化学習法(RL)よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-11-05T10:24:45Z) - Conformal Distributed Remote Inference in Sensor Networks Under Reliability and Communication Constraints [61.62410595953275]
通信制約付き分散共形リスク制御(CD-CRC)
CD-CRCは通信制約下でのセンサネットワークのための新しい意思決定フレームワークである。
論文 参考訳(メタデータ) (2024-09-12T10:12:43Z) - Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves [69.9104427437916]
マルチジェネレータ・ウェーブ・エナジー・コンバータ(WEC)は、スプレッド・ウェーブと呼ばれる異なる方向から来る複数の同時波を処理しなければならない。
これらの複雑な装置は、エネルギー捕獲効率、維持を制限する構造的ストレスの低減、高波に対する積極的な保護という複数の目的を持つコントローラを必要とする。
本稿では,システム力学のシーケンシャルな性質をモデル化する上で,ポリシーと批判ネットワークの異なる機能近似について検討する。
論文 参考訳(メタデータ) (2024-04-17T02:04:10Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust
Closed-Loop Control [63.310780486820796]
繰り返し接続のパラメータ化が閉ループ設定のロバスト性にどのように影響するかを示す。
パラメータが少ないクローズドフォーム連続時間ニューラルネットワーク(CfCs)は、フルランクで完全に接続されたニューラルネットワークよりも優れています。
論文 参考訳(メタデータ) (2023-10-05T21:44:18Z) - DA-LSTM: A Dynamic Drift-Adaptive Learning Framework for Interval Load
Forecasting with LSTM Networks [1.3342521220589318]
ドリフト等級閾値は、ドリフトを識別するための変化検出方法を設計するために定義されるべきである。
本稿では,負荷予測モデルの性能向上を図るための動的ドリフト適応長短期メモリ(DA-LSTM)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-15T16:26:03Z) - Anomaly Detection in Automatic Generation Control Systems Based on
Traffic Pattern Analysis and Deep Transfer Learning [0.38073142980733]
現代の高度に相互接続された電力グリッドでは、電力グリッドの安定性を維持するために自動生成制御(AGC)が不可欠である。
情報通信技術(ICT)システムへのAGCシステムの依存は、様々なサイバー攻撃に対して脆弱である。
情報フロー(IF)分析と異常検出は、サイバー攻撃者がサイバー物理的電力システムを不安定に駆動することを防ぐために最重要となった。
論文 参考訳(メタデータ) (2022-09-16T17:52:42Z) - Cross-Layered Distributed Data-driven Framework For Enhanced Smart Grid
Cyber-Physical Security [3.8237485961848128]
Adaptive Statisticsを使用したクロスレイヤアンサンブルCorrDetが紹介される。
故障したSG測定データの検出と、ネットワーク間時間と送信遅延の一貫性の欠如を統合する。
その結果,CECD-ASは複数のFalse Data Injection, Denial of Service (DoS) および Man In The Middle (MITM) 攻撃を高いF1スコアで検出できることがわかった。
論文 参考訳(メタデータ) (2021-11-10T00:00:51Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - Interference Distribution Prediction for Link Adaptation in
Ultra-Reliable Low-Latency Communications [71.0558149440701]
リンク適応(LA)はURLLCを実現するボトルネックの一つと考えられている。
本稿では,ユーザの干渉信号と雑音比の予測に焦点をあて,LAを増強する。
干渉の時間相関を利用することがURLLCの重要な有効性であることを示す。
論文 参考訳(メタデータ) (2020-07-01T07:59:35Z) - Physics-Informed Neural Networks for Non-linear System Identification
for Power System Dynamics [0.0]
本稿では,将来の電力系統の周波数ダイナミクスを発見するための物理情報ニューラルネットワーク(PINN)の性能について検討する。
PINNは、低慣性システムのより強い非線形性、測定ノイズの増加、データの可用性の制限といった課題に対処する可能性がある。
論文 参考訳(メタデータ) (2020-04-08T14:50:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。