Improving municipal responsiveness through AI-powered image analysis in E-Government
- URL: http://arxiv.org/abs/2504.08972v1
- Date: Fri, 11 Apr 2025 20:53:23 GMT
- Title: Improving municipal responsiveness through AI-powered image analysis in E-Government
- Authors: Catalin Vrabie,
- Abstract summary: This article explores the innovative application of Machine Learning (ML) for image analysis.<n>By using image classification and object detection algorithms, the model supports public institutions in identifying and fast responding to evidence submitted by citizens.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integration of Machine Learning (ML) techniques into public administration marks a new and transformative era for e-government systems. While traditionally e-government studies were focusing on text-based interactions, this one explores the innovative application of ML for image analysis, an approach that enables governments to address citizen petitions more efficiently. By using image classification and object detection algorithms, the model proposed in this article supports public institutions in identifying and fast responding to evidence submitted by citizens in picture format, such as infrastructure issues, environmental concerns or other urban issues that citizens might face. The research also highlights the Jevons Paradox as a critical factor, wherein increased efficiency from the citizen side (especially using mobile platforms and apps) may generate higher demand which should lead to scalable and robust solutions. Using as a case study a Romanian municipality who provided datasets of citizen-submitted images, the author analysed and proved that ML can improve accuracy and responsiveness of public institutions. The findings suggest that adopting ML for e-petition systems can not only enhance citizen participation but also speeding up administrative processes, paving the way for more transparent and effective governance. This study contributes to the discourse on e-government 3.0 by showing the potential of Artificial Intelligence (AI) to transform public service delivery, ensuring sustainable (and scalable) solutions for the growing demands of modern urban governance.
Related papers
- The Oxford Insights Government AI Readiness Index (GARI): An Analysis of its Data and Overcoming Obstacles, with a Case Study of Iraq [0.0]
This research examines the "Government AI Readines Index" (GARI) issued by Oxford.<n>It highlights the evaluation criteria used to assess readiness, including technological infrastructure, human resources, supportive policies, and the level of innovation.<n>The study specifically focuses on Iraq, exploring the challenge the Iraqi government face in adopting and implementing AI technology.
arXiv Detail & Related papers (2025-03-26T07:26:07Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
This paper investigates the interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems.<n>Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes.
arXiv Detail & Related papers (2025-03-12T21:39:38Z) - Applications of Artificial Intelligence Tools to Enhance Legislative Engagement: Case Studies from Make.Org and MAPLE [0.0]
This paper is a collaboration between Make.org and the Massachusetts Platform for Legislative Engagement (MAPLE)<n>Make.org is developing massive online participative platforms that can engage hundreds of thousands or even millions of participants.<n>We believe that assistive integrations of AI can meaningfully impact the equity, efficiency, and accessibility of democratic legislating.
arXiv Detail & Related papers (2025-02-12T19:52:15Z) - The Right to AI [3.2132738637761027]
This paper proposes a Right to AI, which asserts that individuals and communities should meaningfully participate in the development and governance of the AI systems that shape their lives.<n>We critically evaluate how generative agents, large-scale data extraction, and diverse cultural values bring new complexities to AI oversight.
arXiv Detail & Related papers (2025-01-29T04:32:41Z) - Open Problems in Technical AI Governance [93.89102632003996]
Technical AI governance refers to technical analysis and tools for supporting the effective governance of AI.
This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.
arXiv Detail & Related papers (2024-07-20T21:13:56Z) - Representation Engineering: A Top-Down Approach to AI Transparency [130.33981757928166]
We identify and characterize the emerging area of representation engineering (RepE)
RepE places population-level representations, rather than neurons or circuits, at the center of analysis.
We showcase how these methods can provide traction on a wide range of safety-relevant problems.
arXiv Detail & Related papers (2023-10-02T17:59:07Z) - Leveraging Large Language Models for Topic Classification in the Domain
of Public Affairs [65.9077733300329]
Large Language Models (LLMs) have the potential to greatly enhance the analysis of public affairs documents.
LLMs can be of great use to process domain-specific documents, such as those in the domain of public affairs.
arXiv Detail & Related papers (2023-06-05T13:35:01Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - FATE in AI: Towards Algorithmic Inclusivity and Accessibility [0.0]
To prevent algorithmic disparities, fairness, accountability, transparency, and ethics (FATE) in AI are being implemented.
This study examines FATE-related desiderata, particularly transparency and ethics, in areas of the global South that are underserved by AI.
To promote inclusivity, a community-led strategy is proposed to collect and curate representative data for responsible AI design.
arXiv Detail & Related papers (2023-01-03T15:08:10Z) - Empowering Local Communities Using Artificial Intelligence [70.17085406202368]
It has become an important topic to explore the impact of AI on society from a people-centered perspective.
Previous works in citizen science have identified methods of using AI to engage the public in research.
This article discusses the challenges of applying AI in Community Citizen Science.
arXiv Detail & Related papers (2021-10-05T12:51:11Z) - Enhanced well-being assessment as basis for the practical implementation
of ethical and rights-based normative principles for AI [0.0]
We propose the practical application of an enhanced well-being impact assessment framework for Autonomous and Intelligent Systems.
This process could enable a human-centered algorithmically-supported approach to the understanding of the impacts of AI systems.
arXiv Detail & Related papers (2020-07-29T13:26:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.