MCP Bridge: A Lightweight, LLM-Agnostic RESTful Proxy for Model Context Protocol Servers
- URL: http://arxiv.org/abs/2504.08999v1
- Date: Fri, 11 Apr 2025 22:19:48 GMT
- Title: MCP Bridge: A Lightweight, LLM-Agnostic RESTful Proxy for Model Context Protocol Servers
- Authors: Arash Ahmadi, Sarah Sharif, Yaser M. Banad,
- Abstract summary: MCP Bridge is a lightweight proxy that connects to multiple MCP servers and exposes their capabilities through a unified API.<n>The system implements a risk-based execution model with three security levels standard execution, confirmation, and Docker isolation while maintaining backward compatibility with standard MCP clients.
- Score: 0.5266869303483376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are increasingly augmented with external tools through standardized interfaces like the Model Context Protocol (MCP). However, current MCP implementations face critical limitations: they typically require local process execution through STDIO transports, making them impractical for resource-constrained environments like mobile devices, web browsers, and edge computing. We present MCP Bridge, a lightweight RESTful proxy that connects to multiple MCP servers and exposes their capabilities through a unified API. Unlike existing solutions, MCP Bridge is fully LLM-agnostic, supporting any backend regardless of vendor. The system implements a risk-based execution model with three security levels standard execution, confirmation workflow, and Docker isolation while maintaining backward compatibility with standard MCP clients. Complementing this server-side infrastructure is a Python based MCP Gemini Agent that facilitates natural language interaction with MCP tools. The evaluation demonstrates that MCP Bridge successfully addresses the constraints of direct MCP connections while providing enhanced security controls and cross-platform compatibility, enabling sophisticated LLM-powered applications in previously inaccessible environments
Related papers
- Simplified and Secure MCP Gateways for Enterprise AI Integration [0.0]
This paper introduces the MCP Gateway to simplify self-hosted MCP server integration.
The proposed architecture integrates security principles, authentication, intrusion detection, and secure tunneling.
arXiv Detail & Related papers (2025-04-28T17:17:42Z) - MCP Guardian: A Security-First Layer for Safeguarding MCP-Based AI System [0.0]
We present MCP Guardian, a framework that strengthens MCP-based communication with authentication, rate-limiting, logging, tracing, and Web Application Firewall (WAF) scanning.
Our approach fosters secure, scalable data access for AI assistants, underscoring the importance of a defense-in-depth approach.
arXiv Detail & Related papers (2025-04-17T08:49:10Z) - MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits [0.0]
The Model Context Protocol (MCP) is an open protocol that standardizes API calls to large language models (LLMs), data sources, and agentic tools.<n>We show that the current MCP design carries a wide range of security risks for end users.<n>We introduce a safety auditing tool, MCPSafetyScanner, to assess the security of an arbitrary MCP server.
arXiv Detail & Related papers (2025-04-02T21:46:02Z) - PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC [98.82146219495792]
In this paper, we propose a hierarchical agent framework named PC-Agent.<n>From the perception perspective, we devise an Active Perception Module (APM) to overcome the inadequate abilities of current MLLMs in perceiving screenshot content.<n>From the decision-making perspective, to handle complex user instructions and interdependent subtasks more effectively, we propose a hierarchical multi-agent collaboration architecture.
arXiv Detail & Related papers (2025-02-20T05:41:55Z) - MCP-Solver: Integrating Language Models with Constraint Programming Systems [23.191983095692223]
The MCP solver bridges Large Language Models with symbolic solvers through the Model Context Protocol (MCP), an open-source standard for AI system integration.<n>Our implementation offers interfaces for constraint programming (Minizinc), propositional satisfiability (PySAT), and SAT modulo Theories (Python Z3)<n>The system employs an editing approach with iterated validation to ensure model consistency during modifications and enable structured refinement.
arXiv Detail & Related papers (2024-12-31T16:49:27Z) - Towards the interoperability of low-code platforms [1.7450893625541586]
Low-code platforms (LCPs) are becoming popular across various industries.<n>Among them, vendor lock-in is a major concern, especially considering the lack of interoperability between these platforms.<n>This work proposes an approach to improve the interoperability of LCPs by (semi)automatically migrating models specified in one platform to another one.
arXiv Detail & Related papers (2024-12-06T14:33:34Z) - CRAB: Cross-environment Agent Benchmark for Multimodal Language Model Agents [49.68117560675367]
Crab is the first benchmark framework designed to support cross-environment tasks.
Our framework supports multiple devices and can be easily extended to any environment with a Python interface.
The experimental results demonstrate that the single agent with GPT-4o achieves the best completion ratio of 38.01%.
arXiv Detail & Related papers (2024-07-01T17:55:04Z) - Chat AI: A Seamless Slurm-Native Solution for HPC-Based Services [0.3124884279860061]
Large language models (LLMs) allow researchers to run open source or custom fine-tuned LLMs and ensure users that their data remains private and is not stored without their consent.
We propose an implementation consisting of a web service that runs on a cloud VM with secure access to a scalable backend running a multitude of LLM models on HPC systems.
Our solution integrates with the HPC batch scheduler Slurm, enabling seamless deployment on HPC clusters, and is able to run side by side with regular Slurm workloads.
arXiv Detail & Related papers (2024-06-27T12:08:21Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
Confidential computing enables the protection of confidential code and data in a co-tenanted cloud deployment using specialized hardware isolation units called Trusted Execution Environments (TEEs)
TEEs offer low-level C/C++-based toolchains that are susceptible to inherent memory safety vulnerabilities and lack language constructs to monitor explicit and implicit information-flow leaks.
We address the above with HasTEE+, a domain-specific language (cla) embedded in Haskell that enables programming TEEs in a high-level language with strong type-safety.
arXiv Detail & Related papers (2024-01-17T00:56:23Z) - Learning Logic Specifications for Soft Policy Guidance in POMCP [71.69251176275638]
Partially Observable Monte Carlo Planning (POMCP) is an efficient solver for Partially Observable Markov Decision Processes (POMDPs)
POMCP suffers from sparse reward function, namely, rewards achieved only when the final goal is reached.
In this paper, we use inductive logic programming to learn logic specifications from traces of POMCP executions.
arXiv Detail & Related papers (2023-03-16T09:37:10Z) - Towards Semantic Communication Protocols: A Probabilistic Logic
Perspective [69.68769942563812]
We propose a semantic protocol model (SPM) constructed by transforming an NPM into an interpretable symbolic graph written in the probabilistic logic programming language (ProbLog)
By leveraging its interpretability and memory-efficiency, we demonstrate several applications such as SPM reconfiguration for collision-avoidance.
arXiv Detail & Related papers (2022-07-08T14:19:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.