FairACE: Achieving Degree Fairness in Graph Neural Networks via Contrastive and Adversarial Group-Balanced Training
- URL: http://arxiv.org/abs/2504.09210v2
- Date: Tue, 15 Apr 2025 02:22:16 GMT
- Title: FairACE: Achieving Degree Fairness in Graph Neural Networks via Contrastive and Adversarial Group-Balanced Training
- Authors: Jiaxin Liu, Xiaoqian Jiang, Xiang Li, Bohan Zhang, Jing Zhang,
- Abstract summary: We propose a novel GNN framework, namely Fairness- Aware Asymmetric Contrastive Ensemble (FairACE), which inte-grates asymmetric contrastive learning with adversarial training to improve degree fairness.<n>We also propose a novel fairness metric, the Accuracy Distribution Gap (ADG), which can quantitatively assess and ensure equitable performance across different degree-based node groups.
- Score: 23.379213814314372
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fairness has been a significant challenge in graph neural networks (GNNs) since degree biases often result in un-equal prediction performance among nodes with varying degrees. Existing GNN models focus on prediction accuracy, frequently overlooking fairness across different degree groups. To addressthis issue, we propose a novel GNN framework, namely Fairness- Aware Asymmetric Contrastive Ensemble (FairACE), which inte-grates asymmetric contrastive learning with adversarial training to improve degree fairness. FairACE captures one-hop local neighborhood information and two-hop monophily similarity to create fairer node representations and employs a degree fairness regulator to balance performance between high-degree and low-degree nodes. During model training, a novel group-balanced fairness loss is proposed to minimize classification disparities across degree groups. In addition, we also propose a novel fairness metric, the Accuracy Distribution Gap (ADG), which can quantitatively assess and ensure equitable performance across different degree-based node groups. Experimental results on both synthetic and real-world datasets demonstrate that FairACE significantly improves degree fairness metrics while maintaining competitive accuracy in comparison to the state-of-the-art GNN models.
Related papers
- Rethinking Fair Graph Neural Networks from Re-balancing [26.70771023446706]
We find that simple re-balancing methods can easily match or surpass existing fair GNN methods.
We propose FairGB, Fair Graph Neural Network via re-Balancing, which mitigates the unfairness of GNNs by group balancing.
arXiv Detail & Related papers (2024-07-16T11:39:27Z) - Fairness-Aware Meta-Learning via Nash Bargaining [63.44846095241147]
We introduce a two-stage meta-learning framework to address issues of group-level fairness in machine learning.
The first stage involves the use of a Nash Bargaining Solution (NBS) to resolve hypergradient conflicts and steer the model.
We show empirical effects across various fairness objectives in six key fairness datasets and two image classification tasks.
arXiv Detail & Related papers (2024-06-11T07:34:15Z) - Fair Graph Neural Network with Supervised Contrastive Regularization [12.666235467177131]
We propose a novel model for training fairness-aware Graph Neural Networks (GNNs)
Our approach integrates Supervised Contrastive Loss and Environmental Loss to enhance both accuracy and fairness.
arXiv Detail & Related papers (2024-04-09T07:49:05Z) - FairSample: Training Fair and Accurate Graph Convolutional Neural
Networks Efficiently [29.457338893912656]
Societal biases against sensitive groups may exist in many real world graphs.
We present an in-depth analysis on how graph structure bias, node attribute bias, and model parameters may affect the demographic parity of GCNs.
Our insights lead to FairSample, a framework that jointly mitigates the three types of biases.
arXiv Detail & Related papers (2024-01-26T08:17:12Z) - Fairness-Aware Graph Neural Networks: A Survey [53.41838868516936]
Graph Neural Networks (GNNs) have become increasingly important due to their representational power and state-of-the-art predictive performance.
GNNs suffer from fairness issues that arise as a result of the underlying graph data and the fundamental aggregation mechanism.
In this article, we examine and categorize fairness techniques for improving the fairness of GNNs.
arXiv Detail & Related papers (2023-07-08T08:09:06Z) - GFairHint: Improving Individual Fairness for Graph Neural Networks via Fairness Hint [28.70963753478329]
algorithmic fairness in Graph Neural Networks (GNNs) has attracted significant attention.<n>We propose a novel method, GFairHint, which promotes individual fairness in GNNs.<n>GFairHint achieves the best fairness results in almost all combinations of datasets with various backbone models.
arXiv Detail & Related papers (2023-05-25T00:03:22Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
We first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and model weight perturbation.
We then analyze the sufficient conditions to guarantee fairness for the target dataset.
Motivated by these sufficient conditions, we propose robust fairness regularization (RFR)
arXiv Detail & Related papers (2023-03-06T17:19:23Z) - Uncovering the Structural Fairness in Graph Contrastive Learning [87.65091052291544]
Graph contrastive learning (GCL) has emerged as a promising self-supervised approach for learning node representations.
We show that representations obtained by GCL methods are already fairer to degree bias than those learned by GCN.
We devise a novel graph augmentation method, called GRAph contrastive learning for DEgree bias (GRADE), which applies different strategies to low- and high-degree nodes.
arXiv Detail & Related papers (2022-10-06T15:58:25Z) - Analyzing the Effect of Sampling in GNNs on Individual Fairness [79.28449844690566]
Graph neural network (GNN) based methods have saturated the field of recommender systems.
We extend an existing method for promoting individual fairness on graphs to support mini-batch, or sub-sample based, training of a GNN.
We show that mini-batch training facilitate individual fairness promotion by allowing for local nuance to guide the process of fairness promotion in representation learning.
arXiv Detail & Related papers (2022-09-08T16:20:25Z) - FairNorm: Fair and Fast Graph Neural Network Training [9.492903649862761]
Graph neural networks (GNNs) have been demonstrated to achieve state-of-the-art for a number of graph-based learning tasks.
It has been shown that GNNs may inherit and even amplify bias within training data, which leads to unfair results towards certain sensitive groups.
This work proposes FairNorm, a unified normalization framework that reduces the bias in GNN-based learning.
arXiv Detail & Related papers (2022-05-20T06:10:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.