Spiking Neural Network for Intra-cortical Brain Signal Decoding
- URL: http://arxiv.org/abs/2504.09213v1
- Date: Sat, 12 Apr 2025 13:41:59 GMT
- Title: Spiking Neural Network for Intra-cortical Brain Signal Decoding
- Authors: Song Yang, Haotian Fu, Herui Zhang, Peng Zhang, Wei Li, Dongrui Wu,
- Abstract summary: Decoding brain signals accurately and efficiently is crucial for intra-cortical brain-computer interfaces.<n>This paper proposes a spiking neural network (SNN) for effective and energy-efficient intra-cortical brain signal decoding.
- Score: 20.79539749730775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decoding brain signals accurately and efficiently is crucial for intra-cortical brain-computer interfaces. Traditional decoding approaches based on neural activity vector features suffer from low accuracy, whereas deep learning based approaches have high computational cost. To improve both the decoding accuracy and efficiency, this paper proposes a spiking neural network (SNN) for effective and energy-efficient intra-cortical brain signal decoding. We also propose a feature fusion approach, which integrates the manually extracted neural activity vector features with those extracted by a deep neural network, to further improve the decoding accuracy. Experiments in decoding motor-related intra-cortical brain signals of two rhesus macaques demonstrated that our SNN model achieved higher accuracy than traditional artificial neural networks; more importantly, it was tens or hundreds of times more efficient. The SNN model is very suitable for high precision and low power applications like intra-cortical brain-computer interfaces.
Related papers
- Adaptively Pruned Spiking Neural Networks for Energy-Efficient Intracortical Neural Decoding [0.06181089784338582]
Spiking Neural Networks (SNNs) on neuromorphic hardware have demonstrated remarkable efficiency in neural decoding.
We introduce a novel adaptive pruning algorithm specifically designed for SNNs with high activation sparsity, targeting intracortical neural decoding.
arXiv Detail & Related papers (2025-04-15T19:16:34Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.<n>A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.<n>The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.
embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.
split computing - where an SNN is partitioned across two devices - is a promising solution.
This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Mental arithmetic task classification with convolutional neural network
based on spectral-temporal features from EEG [0.47248250311484113]
Deep neural networks (DNN) show significant advantages in computer vision applications.
We present here a shallow neural network that uses mainly two convolutional neural network layers, with relatively few parameters and fast to learn spectral-temporal features from EEG.
Experimental results showed that the shallow CNN model outperformed all the other models and achieved the highest classification accuracy of 90.68%.
arXiv Detail & Related papers (2022-09-26T02:15:22Z) - HyBNN and FedHyBNN: (Federated) Hybrid Binary Neural Networks [0.0]
We introduce a novel hybrid neural network architecture, Hybrid Binary Neural Network (HyBNN)
HyBNN consists of a task-independent, general, full-precision variational autoencoder with a binary latent space and a task specific binary neural network.
We show that our proposed system is able to very significantly outperform a vanilla binary neural network with input binarization.
arXiv Detail & Related papers (2022-05-19T20:27:01Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
We propose to adopt the efficient coding principle, rooted in information theory and developed in computational neuroscience.
We show that sparse coding can effectively maximize the entropy of the output signals.
Our experiments on a public image classification dataset demonstrate that using the structure learned from scratch by our proposed algorithm, one can achieve a classification accuracy comparable to the best expert-designed structure.
arXiv Detail & Related papers (2021-05-27T12:27:24Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
We show how a novel type of adaptive spiking recurrent neural network (SRNN) is able to achieve state-of-the-art performance.
We calculate a $>$100x energy improvement for our SRNNs over classical RNNs on the harder tasks.
arXiv Detail & Related papers (2020-05-24T01:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.