HyBNN and FedHyBNN: (Federated) Hybrid Binary Neural Networks
- URL: http://arxiv.org/abs/2205.09839v1
- Date: Thu, 19 May 2022 20:27:01 GMT
- Title: HyBNN and FedHyBNN: (Federated) Hybrid Binary Neural Networks
- Authors: Kinshuk Dua
- Abstract summary: We introduce a novel hybrid neural network architecture, Hybrid Binary Neural Network (HyBNN)
HyBNN consists of a task-independent, general, full-precision variational autoencoder with a binary latent space and a task specific binary neural network.
We show that our proposed system is able to very significantly outperform a vanilla binary neural network with input binarization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Binary Neural Networks (BNNs), neural networks with weights and activations
constrained to -1(0) and +1, are an alternative to deep neural networks which
offer faster training, lower memory consumption and lightweight models, ideal
for use in resource constrained devices while being able to utilize the
architecture of their deep neural network counterpart. However, the input
binarization step used in BNNs causes a severe accuracy loss. In this paper, we
introduce a novel hybrid neural network architecture, Hybrid Binary Neural
Network (HyBNN), consisting of a task-independent, general, full-precision
variational autoencoder with a binary latent space and a task specific binary
neural network that is able to greatly limit the accuracy loss due to input
binarization by using the full precision variational autoencoder as a feature
extractor. We use it to combine the state-of-the-art accuracy of deep neural
networks with the much faster training time, quicker test-time inference and
power efficiency of binary neural networks. We show that our proposed system is
able to very significantly outperform a vanilla binary neural network with
input binarization. We also introduce FedHyBNN, a highly communication
efficient federated counterpart to HyBNN and demonstrate that it is able to
reach the same accuracy as its non-federated equivalent. We make our source
code, experimental parameters and models available at:
https://anonymous.4open.science/r/HyBNN.
Related papers
- NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
We propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN.
Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M.
In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS dataset.
arXiv Detail & Related papers (2024-08-28T02:17:58Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
Quantized neural networks (QNNs) have been developed, with binarized neural networks (BNNs) restricted to binary values as a special case.
This paper presents an automata-theoretic approach to synthesizing BNNs that meet designated properties.
arXiv Detail & Related papers (2023-07-29T06:27:28Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
A Convolutional Neural Network (CNN) is a class of Deep Neural Network (DNN) widely used in the analysis of visual images captured by an image sensor.
In this paper, we propose a neoteric variant of deep convolutional neural network architecture to ameliorate the performance of existing CNN architectures for real-time inference on embedded systems.
arXiv Detail & Related papers (2021-12-01T18:20:52Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Mining the Weights Knowledge for Optimizing Neural Network Structures [1.995792341399967]
We introduce a switcher neural network (SNN) that uses as inputs the weights of a task-specific neural network (called TNN for short)
By mining the knowledge contained in the weights, the SNN outputs scaling factors for turning off neurons in the TNN.
In terms of accuracy, we outperform baseline networks and other structure learning methods stably and significantly.
arXiv Detail & Related papers (2021-10-11T05:20:56Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - BCNN: Binary Complex Neural Network [16.82755328827758]
Binarized neural networks, or BNNs, show great promise in edge-side applications with resource limited hardware.
We introduce complex representation into the BNNs and propose Binary complex neural network.
BCNN improves BNN by strengthening its learning capability through complex representation and extending its applicability to complex-valued input data.
arXiv Detail & Related papers (2021-03-28T03:35:24Z) - Combining Spiking Neural Network and Artificial Neural Network for
Enhanced Image Classification [1.8411688477000185]
spiking neural networks (SNNs) that more closely resemble biological brain synapses have attracted attention owing to their low power consumption.
We build versatile hybrid neural networks (HNNs) that improve the concerned performance.
arXiv Detail & Related papers (2021-02-21T12:03:16Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.