MedIL: Implicit Latent Spaces for Generating Heterogeneous Medical Images at Arbitrary Resolutions
- URL: http://arxiv.org/abs/2504.09322v1
- Date: Sat, 12 Apr 2025 19:52:56 GMT
- Title: MedIL: Implicit Latent Spaces for Generating Heterogeneous Medical Images at Arbitrary Resolutions
- Authors: Tyler Spears, Shen Zhu, Yinzhu Jin, Aman Shrivastava, P. Thomas Fletcher,
- Abstract summary: MedIL is a first-of-its-kind autoencoder built for encoding medical images with heterogeneous sizes and resolutions.<n>We show how MedIL compresses and preserves clinically-relevant features over large multi-site, multi-resolution datasets.
- Score: 2.2427832125073732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we introduce MedIL, a first-of-its-kind autoencoder built for encoding medical images with heterogeneous sizes and resolutions for image generation. Medical images are often large and heterogeneous, where fine details are of vital clinical importance. Image properties change drastically when considering acquisition equipment, patient demographics, and pathology, making realistic medical image generation challenging. Recent work in latent diffusion models (LDMs) has shown success in generating images resampled to a fixed-size. However, this is a narrow subset of the resolutions native to image acquisition, and resampling discards fine anatomical details. MedIL utilizes implicit neural representations to treat images as continuous signals, where encoding and decoding can be performed at arbitrary resolutions without prior resampling. We quantitatively and qualitatively show how MedIL compresses and preserves clinically-relevant features over large multi-site, multi-resolution datasets of both T1w brain MRIs and lung CTs. We further demonstrate how MedIL can influence the quality of images generated with a diffusion model, and discuss how MedIL can enhance generative models to resemble raw clinical acquisitions.
Related papers
- Causal Disentanglement for Robust Long-tail Medical Image Generation [80.15257897500578]
We propose a novel medical image generation framework, which generates independent pathological and structural features.
We leverage a diffusion model guided by pathological findings to model pathological features, enabling the generation of diverse counterfactual images.
arXiv Detail & Related papers (2025-04-20T01:54:18Z) - MedLoRD: A Medical Low-Resource Diffusion Model for High-Resolution 3D CT Image Synthesis [1.7026856033070354]
We introduce MedLoRD, a generative diffusion model designed for computational resource-constrained environments.
MedLoRD is capable of generating high-dimensional medical volumes with resolutions up to 512$times$512$times$256.
It is evaluated across multiple modalities, including Coronary Computed Tomography Angiography and Lung Computed Tomography datasets.
arXiv Detail & Related papers (2025-03-17T14:22:49Z) - Using Synthetic Images to Augment Small Medical Image Datasets [3.7522420000453]
We have developed a novel conditional variant of a current GAN method, the StyleGAN2, to generate high-resolution medical images.<n>We use the synthetic and real images from six datasets to train models for the downstream task of semantic segmentation.<n>The quality of the generated medical images and the effect of this augmentation on the segmentation performance were evaluated afterward.
arXiv Detail & Related papers (2025-03-02T17:02:11Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.<n>We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - 3D MedDiffusion: A 3D Medical Diffusion Model for Controllable and High-quality Medical Image Generation [47.701856217173244]
3D Medical Diffusion (3D MedDiffusion) model for controllable, high-quality 3D medical image generation.<n>3D MedDiffusion incorporates a novel, highly efficient Patch-Volume Autoencoder that compresses medical images into latent space through patch-wise encoding.<n>We show that 3D MedDiffusion surpasses state-of-the-art methods in generative quality and exhibits strong generalizability across tasks such as sparse-view CT reconstruction, fast MRI reconstruction, and data augmentation.
arXiv Detail & Related papers (2024-12-17T16:25:40Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
We propose a unified MRI reconstruction model robust to various measurement undersampling patterns and image resolutions.<n>Our model improves SSIM by 11% and PSNR by 4 dB over a state-of-the-art CNN (End-to-End VarNet) with 600$times$ faster inference than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - End-to-end autoencoding architecture for the simultaneous generation of
medical images and corresponding segmentation masks [3.1133049660590615]
We present an end-to-end architecture based on the Hamiltonian Variational Autoencoder (HVAE)
This approach yields an improved posterior distribution approximation compared to traditional Variational Autoencoders (VAE)
Our method outperforms generative adversarial conditions, showcasing enhancements in image quality synthesis.
arXiv Detail & Related papers (2023-11-17T11:56:53Z) - DiffBoost: Enhancing Medical Image Segmentation via Text-Guided Diffusion Model [3.890243179348094]
Large-scale, big-variant, high-quality data are crucial for developing robust and successful deep-learning models for medical applications.<n>This paper proposes a novel approach by developing controllable diffusion models for medical image synthesis, called DiffBoost.<n>We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data.
arXiv Detail & Related papers (2023-10-19T16:18:02Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
We propose an end-to-end framework called VerseDiff-UNet, which leverages the denoising diffusion probabilistic model (DDPM)
Our approach integrates the diffusion model into a standard U-shaped architecture.
We evaluate our method on a single dataset of spine images acquired through X-ray imaging.
arXiv Detail & Related papers (2023-09-12T03:05:00Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
We propose a novel Transformer-based Diffusion framework, called MedSegDiff-V2.
We verify its effectiveness on 20 medical image segmentation tasks with different image modalities.
arXiv Detail & Related papers (2023-01-19T03:42:36Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.