Confirmation Bias in Generative AI Chatbots: Mechanisms, Risks, Mitigation Strategies, and Future Research Directions
- URL: http://arxiv.org/abs/2504.09343v1
- Date: Sat, 12 Apr 2025 21:08:36 GMT
- Title: Confirmation Bias in Generative AI Chatbots: Mechanisms, Risks, Mitigation Strategies, and Future Research Directions
- Authors: Yiran Du,
- Abstract summary: The article analyzes the mechanisms by which confirmation bias may manifest in generative AI chatbots.<n>It assesses the ethical and practical risks associated with such bias, and proposes a range of mitigation strategies.<n>The article concludes by emphasizing the need for interdisciplinary collaboration and empirical evaluation to better understand and address confirmation bias in generative AI systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article explores the phenomenon of confirmation bias in generative AI chatbots, a relatively underexamined aspect of AI-human interaction. Drawing on cognitive psychology and computational linguistics, it examines how confirmation bias, commonly understood as the tendency to seek information that aligns with existing beliefs, can be replicated and amplified by the design and functioning of large language models. The article analyzes the mechanisms by which confirmation bias may manifest in chatbot interactions, assesses the ethical and practical risks associated with such bias, and proposes a range of mitigation strategies. These include technical interventions, interface redesign, and policy measures aimed at promoting balanced AI-generated discourse. The article concludes by outlining future research directions, emphasizing the need for interdisciplinary collaboration and empirical evaluation to better understand and address confirmation bias in generative AI systems.
Related papers
- Fine-Grained Bias Detection in LLM: Enhancing detection mechanisms for nuanced biases [0.0]
This study presents a detection framework to identify nuanced biases in Large Language Models (LLMs)<n>The approach integrates contextual analysis, interpretability via attention mechanisms, and counterfactual data augmentation to capture hidden biases.<n>Results show improvements in detecting subtle biases compared to conventional methods.
arXiv Detail & Related papers (2025-03-08T04:43:01Z) - Towards interactive evaluations for interaction harms in human-AI systems [8.989911701384788]
We argue for a paradigm shift toward evaluation centered on.
textitinteractional ethics.
We propose principles for evaluating generative models through interaction scenarios and human impact metrics.
arXiv Detail & Related papers (2024-05-17T08:49:34Z) - Human-AI collaboration is not very collaborative yet: A taxonomy of interaction patterns in AI-assisted decision making from a systematic review [6.013543974938446]
Leveraging Artificial Intelligence in decision support systems has disproportionately focused on technological advancements.
A human-centered perspective attempts to alleviate this concern by designing AI solutions for seamless integration with existing processes.
arXiv Detail & Related papers (2023-10-30T17:46:38Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.<n>It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.<n>We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - Expanding the Role of Affective Phenomena in Multimodal Interaction
Research [57.069159905961214]
We examined over 16,000 papers from selected conferences in multimodal interaction, affective computing, and natural language processing.
We identify 910 affect-related papers and present our analysis of the role of affective phenomena in these papers.
We find limited research on how affect and emotion predictions might be used by AI systems to enhance machine understanding of human social behaviors and cognitive states.
arXiv Detail & Related papers (2023-05-18T09:08:39Z) - Fairness And Bias in Artificial Intelligence: A Brief Survey of Sources,
Impacts, And Mitigation Strategies [11.323961700172175]
This survey paper offers a succinct, comprehensive overview of fairness and bias in AI.
We review sources of bias, such as data, algorithm, and human decision biases.
We assess the societal impact of biased AI systems, focusing on the perpetuation of inequalities and the reinforcement of harmful stereotypes.
arXiv Detail & Related papers (2023-04-16T03:23:55Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Adversarial Interaction Attack: Fooling AI to Misinterpret Human
Intentions [46.87576410532481]
We show that, despite their current huge success, deep learning based AI systems can be easily fooled by subtle adversarial noise.
Based on a case study of skeleton-based human interactions, we propose a novel adversarial attack on interactions.
Our study highlights potential risks in the interaction loop with AI and humans, which need to be carefully addressed when deploying AI systems in safety-critical applications.
arXiv Detail & Related papers (2021-01-17T16:23:20Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.