論文の概要: Structure-Accurate Medical Image Translation based on Dynamic Frequency Balance and Knowledge Guidance
- arxiv url: http://arxiv.org/abs/2504.09441v1
- Date: Sun, 13 Apr 2025 05:48:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:49:51.871195
- Title: Structure-Accurate Medical Image Translation based on Dynamic Frequency Balance and Knowledge Guidance
- Title(参考訳): 動的周波数バランスと知識誘導に基づく構造的正確な医用画像翻訳
- Authors: Jiahua Xu, Dawei Zhou, Lei Hu, Zaiyi Liu, Nannan Wang, Xinbo Gao,
- Abstract要約: 拡散モデルは,必要な医用画像を合成するための強力な戦略である。
既存のアプローチはまだ、高周波情報の過度な適合による解剖学的構造歪みの問題に悩まされている。
本稿では,動的周波数バランスと知識指導に基づく新しい手法を提案する。
- 参考スコア(独自算出の注目度): 60.33892654669606
- License:
- Abstract: Multimodal medical images play a crucial role in the precise and comprehensive clinical diagnosis. Diffusion model is a powerful strategy to synthesize the required medical images. However, existing approaches still suffer from the problem of anatomical structure distortion due to the overfitting of high-frequency information and the weakening of low-frequency information. Thus, we propose a novel method based on dynamic frequency balance and knowledge guidance. Specifically, we first extract the low-frequency and high-frequency components by decomposing the critical features of the model using wavelet transform. Then, a dynamic frequency balance module is designed to adaptively adjust frequency for enhancing global low-frequency features and effective high-frequency details as well as suppressing high-frequency noise. To further overcome the challenges posed by the large differences between different medical modalities, we construct a knowledge-guided mechanism that fuses the prior clinical knowledge from a visual language model with visual features, to facilitate the generation of accurate anatomical structures. Experimental evaluations on multiple datasets show the proposed method achieves significant improvements in qualitative and quantitative assessments, verifying its effectiveness and superiority.
- Abstract(参考訳): マルチモーダル医療画像は、正確かつ包括的な臨床診断において重要な役割を担っている。
拡散モデルは,必要な医用画像を合成するための強力な戦略である。
しかし、既存のアプローチは、高周波情報の過度な適合と低周波情報の弱さによる解剖学的構造歪みの問題に悩まされている。
そこで本研究では,動的周波数バランスと知識指導に基づく新しい手法を提案する。
具体的には、ウェーブレット変換を用いてモデルの重要な特徴を分解することにより、まず低周波成分と高周波成分を抽出する。
そして、動的周波数バランスモジュールは、大域的な低周波特性と有効な高周波詳細を向上し、高周波ノイズを抑制するために適応的に周波数を調整するように設計されている。
異なる医療形態の相違による課題をさらに克服するため,視覚的特徴を持つ視覚言語モデルから先行臨床知識を融合させる知識誘導機構を構築し,正確な解剖学的構造の生成を容易にする。
複数のデータセットに対する実験評価の結果,提案手法は質的,定量的評価の大幅な改善を実現し,その有効性と優越性を検証した。
関連論文リスト
- FgC2F-UDiff: Frequency-guided and Coarse-to-fine Unified Diffusion Model for Multi-modality Missing MRI Synthesis [6.475175425060296]
我々は、周波数誘導および粗粒拡散モデル(FgC2F-UDiff)という新しい統合合成モデルを提案する。
論文 参考訳(メタデータ) (2025-01-07T04:42:45Z) - Synomaly Noise and Multi-Stage Diffusion: A Novel Approach for Unsupervised Anomaly Detection in Ultrasound Imaging [32.99597899937902]
拡散モデルに基づく新しい教師なし異常検出フレームワークを提案する。
提案手法は, 合成ノイズ関数と多段拡散過程を組み込む。
提案手法は頸動脈US,脳MRI,肝CTを用いて検討した。
論文 参考訳(メタデータ) (2024-11-06T15:43:51Z) - Multiscale Latent Diffusion Model for Enhanced Feature Extraction from Medical Images [5.395912799904941]
CTスキャナーモデルと取得プロトコルのバリエーションは、抽出した放射能特性に有意な変動をもたらす。
LTDiff++は医療画像の特徴抽出を強化するために設計されたマルチスケール潜在拡散モデルである。
論文 参考訳(メタデータ) (2024-10-05T02:13:57Z) - Diffusion Reconstruction of Ultrasound Images with Informative
Uncertainty [5.375425938215277]
超音波画像の品質を高めるには、コントラスト、解像度、スペックル保存といった同時的な要因のバランスを取る必要がある。
拡散モデルの進歩を生かしたハイブリッドアプローチを提案する。
シミュレーション,in-vitro,in-vivoデータの総合的な実験を行い,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2023-10-31T16:51:40Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
本稿では,マルチモーダル入力を統一的に処理する臨床診断支援として,トランスフォーマーを用いた表現学習モデルについて報告する。
統一モデルは, 肺疾患の同定において, 画像のみのモデル, 非統一型マルチモーダル診断モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-01T16:23:47Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。