論文の概要: Sparse Deformable Mamba for Hyperspectral Image Classification
- arxiv url: http://arxiv.org/abs/2504.09446v1
- Date: Sun, 13 Apr 2025 06:08:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:52:10.667851
- Title: Sparse Deformable Mamba for Hyperspectral Image Classification
- Title(参考訳): ハイパースペクトル画像分類のためのスパース変形可能なマンバ
- Authors: Lincoln Linlin Xu, Yimin Zhu, Zack Dewis, Zhengsen Xu, Motasem Alkayid, Mabel Heffring, Saeid Taleghanidoozdoozan,
- Abstract要約: 最近のMambaモデルでは、ハイパースペクトル画像(HSI)の分類が大幅に改善されている。
1つの重要な課題は、マンバ配列を効率的かつ効果的に構築することの難しさによって引き起こされる。
本稿では,HSI分類の強化を目的としたスパース変形型マンバ (SDMamba) 手法を提案する。
- 参考スコア(独自算出の注目度): 1.3471768511567523
- License:
- Abstract: Although the recent Mamba models significantly improve hyperspectral image (HSI) classification, one critical challenge is caused by the difficulty to build the Mamba sequence efficiently and effectively. This paper presents a Sparse Deformable Mamba (SDMamba) approach for enhanced HSI classification, with the following contributions. First, to enhance Mamba sequence, an efficient Sparse Deformable Sequencing (SDS) approach is designed to adaptively learn the "optimal" sequence, leading to sparse and deformable Mamba sequence with increased detail preservation and decreased computations. Second, to boost spatial-spectral feature learning, based on SDS, a Sparse Deformable Spatial Mamba Module (SDSpaM) and a Sparse Deformable Spectral Mamba Module (SDSpeM) are designed for tailored modeling of the spatial information spectral information. Last, to improve the fusion of SDSpaM and SDSpeM, an attention based feature fusion approach is designed to integrate the outputs of the SDSpaM and SDSpeM. The proposed method is tested on several benchmark datasets with many state-of-the-art approaches, demonstrating that the proposed approach can achieve higher accuracy, faster speed, and better detail small-class preservation capability.
- Abstract(参考訳): 最近のMambaモデルでは、ハイパースペクトル画像(HSI)の分類が大幅に改善されているが、Mambaシークエンスを効率的かつ効果的に構築することが難しいため、重要な課題が1つある。
本稿では,HSI分類の強化を目的としたスパース・デフォルマブル・マンバ(SDMamba)手法を提案する。
第一に、効率的なスパース変形型シークエンシング(SDS)アプローチは「最適」シーケンスを適応的に学習するように設計され、より詳細な保存と計算量の削減を図ったスパース変形型マンバシーケンスを実現する。
第2に,SDSに基づく空間スペクトル特徴学習を促進するために,空間情報スペクトル情報のモデル化のために,スパース変形可能な空間マンバモジュール(SDSpaM)とスパース変形可能なスペクトルマンバモジュール(SDSpeM)を設計した。
最後に、SDSpaMとSDSpeMの融合を改善するために、SDSpaMとSDSpeMの出力を統合するために、注目に基づく特徴融合アプローチを設計する。
提案手法は,提案手法がより精度が高く,高速で,より詳細な小クラス保存機能を実現することを実証し,多くの最先端手法を用いたベンチマークデータセットで検証した。
関連論文リスト
- MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification [46.111607032455225]
本稿では,Mambaモデルに基づく新しいHSI分類モデル,MambaHSIを提案する。
具体的には,空間的マンバブロック(SpaMB)を設計し,画素レベルの画像全体の長距離相互作用をモデル化する。
スペクトルベクトルを複数のグループに分割し、異なるスペクトル群間の関係をマイニングし、スペクトル特徴を抽出するスペクトルマンバブロック(SpeMB)を提案する。
論文 参考訳(メタデータ) (2025-01-09T03:27:47Z) - Detail Matters: Mamba-Inspired Joint Unfolding Network for Snapshot Spectral Compressive Imaging [40.80197280147993]
本研究では,HSI再建の非線形および不適切な特徴を克服するために,マンバインスパイアされたジョイント・アンフォールディング・ネットワーク(MiJUN)を提案する。
本稿では,初期最適化段階への依存を減らすために,高速化された展開ネットワーク方式を提案する。
テンソルモード-$k$展開をMambaネットワークに統合することにより,Mambaによる走査戦略を洗練する。
論文 参考訳(メタデータ) (2025-01-02T13:56:23Z) - Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement [54.427965535613886]
Mambaは、新しいステートスペースモデル(SSM)として、自然言語処理やコンピュータビジョンに広く応用されている。
本稿では,MambaとU-Net for SEタスクを統合する革新的なアーキテクチャであるMamba-SEUNetを紹介する。
論文 参考訳(メタデータ) (2024-12-21T13:43:51Z) - Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
継続的学習は、AIモデルに時間とともに一連のタスクを学習する能力を持たせることを目的としている。
ステートスペースモデル(SSM)はコンピュータビジョンにおいて顕著な成功を収めた。
大規模マンバ基礎モデルのコアSSMを連続的に微調整するフレームワークであるMamba-CLを紹介する。
論文 参考訳(メタデータ) (2024-11-23T06:36:16Z) - SIGMA: Selective Gated Mamba for Sequential Recommendation [56.85338055215429]
最近の進歩であるMambaは、時系列予測において例外的なパフォーマンスを示した。
SIGMA(Selective Gated Mamba)と呼ばれる,シークエンシャルレコメンデーションのための新しいフレームワークを紹介する。
以上の結果から,SIGMAは5つの実世界のデータセットにおいて,現在のモデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-08-21T09:12:59Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
本研究では,空間スペクトルSSMを用いたクロススキャンマンバ(CS-Mamba)を提案する。
実験の結果, CS-Mambaは最先端の性能を達成し, マスク付きトレーニング手法によりスムーズな特徴を再構築し, 視覚的品質を向上させることができた。
論文 参考訳(メタデータ) (2024-08-01T15:14:10Z) - GroupMamba: Efficient Group-Based Visual State Space Model [66.35608254724566]
状態空間モデル(SSM)は、最近、四次計算の複雑さで長距離依存を捉えることを約束している。
しかし、純粋にSSMベースのモデルは、コンピュータビジョンタスクにおける安定性と最先端の性能を達成するために重要な課題に直面している。
本稿では,コンピュータビジョンのためのSSMベースのモデルをスケールする上での課題,特に大規模モデルの不安定性と非効率性について論じる。
論文 参考訳(メタデータ) (2024-07-18T17:59:58Z) - Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification [4.389334324926174]
本研究では、このタスクにステートスペースモデル(SSM)をデプロイする最初の試みである、HSI分類のための革新的なMamba-in-Mamba(MiM)アーキテクチャを紹介する。
MiMモデルには,1)イメージをシーケンスデータに変換する新しい集中型Mamba-Cross-Scan(MCS)機構,2)Tokenized Mamba(T-Mamba)エンコーダ,3)Weighted MCS Fusion(WMF)モジュールが含まれる。
3つの公開HSIデータセットによる実験結果から,本手法は既存のベースラインや最先端アプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-05-20T13:19:02Z) - Spectral-Spatial Mamba for Hyperspectral Image Classification [23.215920983979426]
スペクトル空間マンバ(SS-Mamba)は高スペクトル画像(HSI)分類に適用される。
提案されたSS-マンバは、主にスペクトル空間トークン生成モジュールと、いくつかの積層スペクトル空間マンバブロックから構成される。
広く利用されているHSIデータセットを用いた実験結果から,提案モデルが競合する結果が得られることが明らかになった。
論文 参考訳(メタデータ) (2024-04-29T03:36:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。