論文の概要: FractalForensics: Proactive Deepfake Detection and Localization via Fractal Watermarks
- arxiv url: http://arxiv.org/abs/2504.09451v1
- Date: Sun, 13 Apr 2025 06:22:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:52:09.393252
- Title: FractalForensics: Proactive Deepfake Detection and Localization via Fractal Watermarks
- Title(参考訳): フラクタルForensics:フラクタル透かしによるプロアクティブディープフェイク検出と位置決め
- Authors: Tianyi Wang, Harry Cheng, Ming-Hui Liu, Mohan Kankanhalli,
- Abstract要約: 強靭な透かしによる能動的ディープフェイク検出は、受動ディープフェイク検出器が高品質な合成画像を特定する上での課題に遭遇して以来、これまで行われてきた。
本稿では, フラクタルフォレスティクス(Fractal Forensics)という, プロアクティブなディープフェイク検出と局所化のためのフラクタル透かしを提案する。
- 参考スコア(独自算出の注目度): 5.788357075196786
- License:
- Abstract: Proactive Deepfake detection via robust watermarks has been raised ever since passive Deepfake detectors encountered challenges in identifying high-quality synthetic images. However, while demonstrating reasonable detection performance, they lack localization functionality and explainability in detection results. Additionally, the unstable robustness of watermarks can significantly affect the detection performance accordingly. In this study, we propose novel fractal watermarks for proactive Deepfake detection and localization, namely FractalForensics. Benefiting from the characteristics of fractals, we devise a parameter-driven watermark generation pipeline that derives fractal-based watermarks and conducts one-way encryption regarding the parameters selected. Subsequently, we propose a semi-fragile watermarking framework for watermark embedding and recovery, trained to be robust against benign image processing operations and fragile when facing Deepfake manipulations in a black-box setting. Meanwhile, we introduce an entry-to-patch strategy that implicitly embeds the watermark matrix entries into image patches at corresponding positions, achieving localization of Deepfake manipulations. Extensive experiments demonstrate satisfactory robustness and fragility of our approach against common image processing operations and Deepfake manipulations, outperforming state-of-the-art semi-fragile watermarking algorithms and passive detectors for Deepfake detection. Furthermore, by highlighting the areas manipulated, our method provides explainability for the proactive Deepfake detection results.
- Abstract(参考訳): 強靭な透かしによる能動的ディープフェイク検出は、受動ディープフェイク検出器が高品質な合成画像を特定する上での課題に遭遇して以来、これまで行われてきた。
しかし、適切な検出性能を示す一方で、検出結果の局所化機能や説明性に欠ける。
さらに、透かしの不安定な堅牢性は、検出性能に大きく影響する可能性がある。
本研究では, フラクタルフォレスティクス(FractalForensics, FractalForensics)という, プロアクティブなディープフェイク検出と局所化のための新しいフラクタル透かしを提案する。
フラクタルの特性から、フラクタルベースの透かしを導出し、選択したパラメータに関する一方通行の暗号化を行うパラメータ駆動型透かし生成パイプラインを考案した。
次に,透かしの埋め込みと回復のための半フレジブルな透かしフレームワークを提案し,ブラックボックス設定でディープフェイク操作に直面する場合,良質な画像処理操作に対して堅牢で脆弱であるように訓練した。
一方,透かし行列のエントリを画像パッチに暗黙的に埋め込み,ディープフェイク操作の局所化を実現する。
広汎な実験により、一般的な画像処理操作やディープフェイク操作に対するアプローチの堅牢性と脆弱性を実証し、最先端のセミフレジル透かしアルゴリズムおよびディープフェイク検出のための受動的検出器の性能を向上した。
さらに,操作領域を強調表示することにより,プロアクティブなDeepfake検出結果に対する説明可能性を提供する。
関連論文リスト
- LampMark: Proactive Deepfake Detection via Training-Free Landmark Perceptual Watermarks [7.965986856780787]
本稿では,LampMarkを略して,新しい学習自由なランドマークとして紹介する。
まず、Deepfake操作の構造に敏感な特性を分析し、セキュアで機密性の高い変換パイプラインを考案する。
本稿では,保護対象画像に関する透かしを認識不能に埋め込み,抽出するエンド・ツー・エンドの透かしフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-26T08:24:56Z) - Facial Features Matter: a Dynamic Watermark based Proactive Deepfake Detection Approach [11.51480331713537]
本稿では,顔特徴に基づく能動的深度検出法(FaceProtect)を提案する。
本稿では,128次元顔特徴ベクトルを入力として利用するGODWGM(One-way Dynamic Watermark Generating Mechanism)を提案する。
また, ステガノグラフィとGODWGMを併用し, ベンチマーク透かしの同時送信を可能にするWatermark-based Verification Strategy (WVS)を提案する。
論文 参考訳(メタデータ) (2024-11-22T08:49:08Z) - Social Media Authentication and Combating Deepfakes using Semi-fragile Invisible Image Watermarking [6.246098300155482]
本稿では,メディア認証のために,見えない秘密メッセージを実画像に埋め込む半フレジブルな画像透かし手法を提案する。
提案するフレームワークは,顔の操作や改ざんに対して脆弱であると同時に,画像処理操作や透かし除去攻撃に対して頑健であるように設計されている。
論文 参考訳(メタデータ) (2024-10-02T18:05:03Z) - WaterSeeker: Pioneering Efficient Detection of Watermarked Segments in Large Documents [63.563031923075066]
WaterSeekerは、広範囲な自然テキストの中で、ウォーターマークされたセグメントを効率的に検出し、発見するための新しいアプローチである。
検出精度と計算効率のバランスが良くなる。
論文 参考訳(メタデータ) (2024-09-08T14:45:47Z) - Are Watermarks Bugs for Deepfake Detectors? Rethinking Proactive Forensics [14.596038695008403]
現在の透かしモデルは、もともと本物の画像のために考案されたもので、偽造画像に直接適用した場合、デプロイされたディープフェイク検出器に害を与える可能性があると我々は主張する。
本稿では,能動的法医学を代表としてAdvMarkを提案し,受動検出器の対角的脆弱性を有効に活用する。
論文 参考訳(メタデータ) (2024-04-27T11:20:49Z) - Robustness of AI-Image Detectors: Fundamental Limits and Practical
Attacks [47.04650443491879]
我々は、透かしやディープフェイク検出器を含む様々なAI画像検出器の堅牢性を分析する。
ウォーターマーキング手法は,攻撃者が実際の画像をウォーターマーキングとして識別することを目的としたスプーフ攻撃に対して脆弱であることを示す。
論文 参考訳(メタデータ) (2023-09-29T18:30:29Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
本稿では、検出器フレンドリーな画像から、転送可能な事前知識を求める。
これは、検出器フレンドリー(DFUI)と水中画像の高度に劣化した領域が、特徴分布のギャップがあることを統計的に観察したものである。
高速かつパラメータの少ない本手法は変圧器型検出器よりも優れた性能を保っている。
論文 参考訳(メタデータ) (2023-08-24T12:32:46Z) - WMFormer++: Nested Transformer for Visible Watermark Removal via Implict
Joint Learning [68.00975867932331]
既存の透かし除去法は主にタスク固有のデコーダブランチを持つUNetに依存している。
両分野の情報を包括的に統合するために,暗黙的な共同学習パラダイムを導入する。
その結果、既存の最先端手法をはるかに上回る、我々のアプローチの顕著な優位性を示した。
論文 参考訳(メタデータ) (2023-08-20T07:56:34Z) - MMNet: Multi-Collaboration and Multi-Supervision Network for Sequential
Deepfake Detection [81.59191603867586]
シークエンシャルディープフェイク検出は、回復のための正しいシーケンスで偽の顔領域を特定することを目的としている。
偽画像の復元には、逆変換を実装するための操作モデルの知識が必要である。
顔画像の空間スケールや逐次順列化を扱うマルチコラボレーション・マルチスーパービジョンネットワーク(MMNet)を提案する。
論文 参考訳(メタデータ) (2023-07-06T02:32:08Z) - FaceSigns: Semi-Fragile Neural Watermarks for Media Authentication and
Countering Deepfakes [25.277040616599336]
近年のリアルな画像合成技術やビデオ合成技術の発展により、ディープフェイクやメディアの操作は目覚ましい脅威になりつつある。
本稿では,画像画素に埋め込まれた見えない秘密メッセージを検証することによってメディア認証を可能にする,深層学習に基づく半フレギール透かし手法を提案する。
論文 参考訳(メタデータ) (2022-04-05T03:29:30Z) - Detect and Locate: A Face Anti-Manipulation Approach with Semantic and
Noise-level Supervision [67.73180660609844]
本稿では,画像中の偽造顔を効率的に検出する,概念的にシンプルだが効果的な方法を提案する。
提案手法は,画像に関する意味の高い意味情報を提供するセグメンテーションマップに依存する。
提案モデルでは,最先端検出精度と顕著なローカライゼーション性能を実現する。
論文 参考訳(メタデータ) (2021-07-13T02:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。