MigGPT: Harnessing Large Language Models for Automated Migration of Out-of-Tree Linux Kernel Patches Across Versions
- URL: http://arxiv.org/abs/2504.09474v1
- Date: Sun, 13 Apr 2025 08:08:37 GMT
- Title: MigGPT: Harnessing Large Language Models for Automated Migration of Out-of-Tree Linux Kernel Patches Across Versions
- Authors: Pucheng Dang, Di Huang, Dong Li, Kang Chen, Yuanbo Wen, Qi Guo, Xing Hu, Ninghui Sun,
- Abstract summary: Large language models (LLMs) have shown remarkable progress across various domains.<n>MigGPT is a framework that employs a novel code fingerprint structure to retain code snippet information.
- Score: 24.744652237986276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-tree kernel patches are essential for adapting the Linux kernel to new hardware or enabling specific functionalities. Maintaining and updating these patches across different kernel versions demands significant effort from experienced engineers. Large language models (LLMs) have shown remarkable progress across various domains, suggesting their potential for automating out-of-tree kernel patch migration. However, our findings reveal that LLMs, while promising, struggle with incomplete code context understanding and inaccurate migration point identification. In this work, we propose MigGPT, a framework that employs a novel code fingerprint structure to retain code snippet information and incorporates three meticulously designed modules to improve the migration accuracy and efficiency of out-of-tree kernel patches. Furthermore, we establish a robust benchmark using real-world out-of-tree kernel patch projects to evaluate LLM capabilities. Evaluations show that MigGPT significantly outperforms the direct application of vanilla LLMs, achieving an average completion rate of 72.59% (50.74% improvement) for migration tasks.
Related papers
- CrashFixer: A crash resolution agent for the Linux kernel [58.152358195983155]
This work builds upon kGym, which shares a benchmark for system-level Linux kernel bugs and a platform to run experiments on the Linux kernel.
This paper introduces CrashFixer, the first LLM-based software repair agent that is applicable to Linux kernel bugs.
arXiv Detail & Related papers (2025-04-29T04:18:51Z) - Migrating Code At Scale With LLMs At Google [0.0]
We discuss a large-scale, costly and traditionally manual migration project at Google.
We propose a novel automated algorithm that uses change location discovery and a Large Language Model (LLM) to aid developers conduct the migration.
Our results suggest that our automated, LLM-assisted workflow can serve as a model for similar initiatives.
arXiv Detail & Related papers (2025-04-13T18:52:44Z) - LLMigrate: Transforming "Lazy" Large Language Models into Efficient Source Code Migrators [21.114491141763647]
Rewriting C code in Rust provides stronger memory safety, yet migrating larges such as the 32-million-line Linux kernel remains challenging.<n>Recent Large Language Model (LLM) approaches produce more idiomatic, safe Rust programs but frequently exhibit "laziness"<n>LLM-based C-to-Rust translation tool splits modules into discrete functions, translating them individually, and then reintegrating them.
arXiv Detail & Related papers (2025-03-31T07:09:07Z) - SWE-Fixer: Training Open-Source LLMs for Effective and Efficient GitHub Issue Resolution [56.9361004704428]
Large Language Models (LLMs) have demonstrated remarkable proficiency across a variety of complex tasks.<n>SWE-Fixer is a novel open-source framework designed to effectively and efficiently resolve GitHub issues.<n>We assess our approach on the SWE-Bench Lite and Verified benchmarks, achieving state-of-the-art performance among open-source models.
arXiv Detail & Related papers (2025-01-09T07:54:24Z) - GlitchMiner: Mining Glitch Tokens in Large Language Models via Gradient-based Discrete Optimization [5.962706501263955]
Glitch tokens in Large Language Models (LLMs) can trigger unpredictable behaviors, threatening model reliability and safety.
We propose GlitchMiner, a gradient-based discrete optimization framework that efficiently identifies glitch tokens.
Experiments across multiple LLM architectures demonstrate that GlitchMiner outperforms existing methods in detection accuracy and adaptability.
arXiv Detail & Related papers (2024-10-19T09:49:12Z) - KGym: A Platform and Dataset to Benchmark Large Language Models on Linux Kernel Crash Resolution [59.20933707301566]
Large Language Models (LLMs) are consistently improving at increasingly realistic software engineering (SE) tasks.
In real-world software stacks, significant SE effort is spent developing foundational system software like the Linux kernel.
To evaluate if ML models are useful while developing such large-scale systems-level software, we introduce kGym and kBench.
arXiv Detail & Related papers (2024-07-02T21:44:22Z) - Example-Based Automatic Migration of Continuous Integration Systems [2.2836654317217326]
Continuous Integration (CI) is a widely adopted practice for faster code change integration and testing.
Developers often migrate between CI systems in pursuit of features like matrix building or better logging.
This migration is effort intensive and error-prone owing to limited knowledge of the new CI system and its syntax.
We propose a novel approach for CI system's automatic migration: CIMig.
arXiv Detail & Related papers (2024-07-02T20:19:21Z) - Can Feedback Enhance Semantic Grounding in Large Vision-Language Models? [61.899791071654654]
We investigate whether Vision-Language Models (VLMs) can improve their semantic grounding by "receiving" feedback.
We find that if prompted appropriately, VLMs can utilize feedback both in a single step and iteratively.
We show grounding accuracy consistently improves using automated feedback across all models in all settings investigated.
arXiv Detail & Related papers (2024-04-09T17:59:04Z) - Online Adaptation of Language Models with a Memory of Amortized Contexts [82.02369596879817]
Memory of Amortized Contexts (MAC) is an efficient and effective online adaptation framework for large language models.
We show how MAC can be combined with and improve the performance of popular alternatives such as retrieval augmented generations.
arXiv Detail & Related papers (2024-03-07T08:34:57Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Bench is a benchmark rooted in real-world programming applications that leverage existing code repositories to perform tasks.
To evaluate both Large Language Models (LLMs) and AI agents, two setups are employed: ML-LLM-Bench for assessing LLMs' text-to-code conversion within a predefined deployment environment, and ML-Agent-Bench for testing autonomous agents in an end-to-end task execution within a Linux sandbox environment.
arXiv Detail & Related papers (2023-11-16T12:03:21Z) - The Devil is in the Errors: Leveraging Large Language Models for
Fine-grained Machine Translation Evaluation [93.01964988474755]
AutoMQM is a prompting technique which asks large language models to identify and categorize errors in translations.
We study the impact of labeled data through in-context learning and finetuning.
We then evaluate AutoMQM with PaLM-2 models, and we find that it improves performance compared to just prompting for scores.
arXiv Detail & Related papers (2023-08-14T17:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.