論文の概要: HalluShift: Measuring Distribution Shifts towards Hallucination Detection in LLMs
- arxiv url: http://arxiv.org/abs/2504.09482v1
- Date: Sun, 13 Apr 2025 08:35:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:54:44.968457
- Title: HalluShift: Measuring Distribution Shifts towards Hallucination Detection in LLMs
- Title(参考訳): HalluShift: LLMにおける幻覚検出への分布シフトの測定
- Authors: Sharanya Dasgupta, Sujoy Nath, Arkaprabha Basu, Pourya Shamsolmoali, Swagatam Das,
- Abstract要約: 大規模言語モデル(LLM)は、最近、与えられたプロンプトに対する革新的な応答を生成できるため、広く注目を集めている。
本研究では,LLMの内部動態から幻覚が生じると仮定する。
本研究では,内部状態空間における分布変化を解析するための革新的アプローチであるHaluShiftを導入する。
- 参考スコア(独自算出の注目度): 14.005452985740849
- License:
- Abstract: Large Language Models (LLMs) have recently garnered widespread attention due to their adeptness at generating innovative responses to the given prompts across a multitude of domains. However, LLMs often suffer from the inherent limitation of hallucinations and generate incorrect information while maintaining well-structured and coherent responses. In this work, we hypothesize that hallucinations stem from the internal dynamics of LLMs. Our observations indicate that, during passage generation, LLMs tend to deviate from factual accuracy in subtle parts of responses, eventually shifting toward misinformation. This phenomenon bears a resemblance to human cognition, where individuals may hallucinate while maintaining logical coherence, embedding uncertainty within minor segments of their speech. To investigate this further, we introduce an innovative approach, HalluShift, designed to analyze the distribution shifts in the internal state space and token probabilities of the LLM-generated responses. Our method attains superior performance compared to existing baselines across various benchmark datasets. Our codebase is available at https://github.com/sharanya-dasgupta001/hallushift.
- Abstract(参考訳): 大規模言語モデル(LLM)は、最近、複数のドメインにまたがって与えられたプロンプトに対する革新的な応答を生成することの容易性から、広く注目を集めている。
しかし、LLMは幻覚の固有の限界に悩まされ、よく構造化された一貫性のある応答を維持しながら誤った情報を生成する。
本研究では,LLMの内部動態から幻覚が生じると仮定する。
我々の観察は、通過生成中、LSMは反応の微妙な部分において事実の精度から逸脱し、最終的には誤情報へと移行する傾向があることを示唆している。
この現象は、個人が論理的コヒーレンスを維持しながら幻覚し、スピーチの小さな部分に不確かさを埋め込むという人間の認知に類似している。
さらに, 内部状態空間における分布変化と LLM 生成応答のトークン確率を解析するための革新的アプローチである HalluShift を導入する。
提案手法は,様々なベンチマークデータセットにおいて,既存のベースラインに比べて優れた性能を実現する。
私たちのコードベースはhttps://github.com/sharanya-dasgupta001/hallushiftで公開されています。
関連論文リスト
- Combating Multimodal LLM Hallucination via Bottom-Up Holistic Reasoning [151.4060202671114]
マルチモーダル大規模言語モデル(MLLM)は、視覚言語タスクを前進させる前例のない能力を示した。
本稿では,MLLMにおける幻覚に対処するためのボトムアップ推論フレームワークを提案する。
本フレームワークは、認識レベル情報と認知レベルコモンセンス知識を検証・統合することにより、視覚とテキストの両方の入力における潜在的な問題に体系的に対処する。
論文 参考訳(メタデータ) (2024-12-15T09:10:46Z) - SLM Meets LLM: Balancing Latency, Interpretability and Consistency in Hallucination Detection [10.54378596443678]
大規模言語モデル(LLM)は高い能力を持つが、リアルタイムアプリケーションではレイテンシの問題に直面している。
本研究では,実効的なプロンプト技術の導入により,実時間で解釈可能な幻覚検出を最適化する。
論文 参考訳(メタデータ) (2024-08-22T22:13:13Z) - Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
大規模言語モデル(LLM)は様々な自然言語処理タスクで広く採用されている。
それらは、入力源から逸脱する不信または矛盾したコンテンツを生成し、深刻な結果をもたらす。
本稿では,LLMの生成した回答の幻覚を効果的に検出するために,RelDという頑健な識別器を提案する。
論文 参考訳(メタデータ) (2024-07-04T18:47:42Z) - LLM Internal States Reveal Hallucination Risk Faced With a Query [62.29558761326031]
人間は、クエリに直面したとき、私たちが知らないことを認識できる自己認識プロセスを持っています。
本稿では,大規模言語モデルが応答生成に先立って,自身の幻覚リスクを推定できるかどうかを検討する。
確率推定器により, LLM自己評価を利用して, 平均幻覚推定精度84.32%を達成する。
論文 参考訳(メタデータ) (2024-07-03T17:08:52Z) - Exploring and Evaluating Hallucinations in LLM-Powered Code Generation [14.438161741833687]
LLM(Large Language Models)は、ユーザの意図から逸脱した出力を生成し、内部的不整合を示すか、事実的知識と不整合を示す。
既存の研究は主に、自然言語生成の分野における幻覚の投資に重点を置いている。
我々は,LLM生成コードのテーマ解析を行い,その内に存在する幻覚を要約し,分類する。
幻覚認識におけるLLMの性能評価のためのベンチマークであるHaluCodeを提案する。
論文 参考訳(メタデータ) (2024-04-01T07:31:45Z) - Unsupervised Real-Time Hallucination Detection based on the Internal States of Large Language Models [12.27217471495276]
大型言語モデル(LLM)における幻覚は、一貫性はあるが事実的に不正確な応答を生成する。
我々は、リアルタイム幻覚検出にLLMの内部状態を活用する教師なしのトレーニングフレームワークであるMINDを提案する。
また,複数のLLMを対象とした幻覚検出のための新しいベンチマークであるHELMを提案する。
論文 参考訳(メタデータ) (2024-03-11T05:51:03Z) - Retrieve Only When It Needs: Adaptive Retrieval Augmentation for Hallucination Mitigation in Large Language Models [68.91592125175787]
幻覚は、大規模言語モデル(LLM)の実践的実装において重要な課題となる。
本稿では,幻覚に対処するための選択的検索拡張プロセスにより,Lowenを改良する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-02-16T11:55:40Z) - A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions [40.79317187623401]
大規模言語モデル(LLM)の出現は、自然言語処理(NLP)において大きなブレークスルーとなった。
LLMは幻覚を起こす傾向があり、可視だが非現実的な内容を生成する。
この現象は、実世界の情報検索システムにおけるLCMの信頼性に対する重大な懸念を引き起こす。
論文 参考訳(メタデータ) (2023-11-09T09:25:37Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
大規模言語モデル(LLM)は、様々な下流タスクで顕著な機能を示している。
LLMは時折、ユーザ入力から分岐するコンテンツを生成し、以前生成されたコンテキストと矛盾する。
論文 参考訳(メタデータ) (2023-09-03T16:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。