PCM-SAR: Physics-Driven Contrastive Mutual Learning for SAR Classification
- URL: http://arxiv.org/abs/2504.09502v1
- Date: Sun, 13 Apr 2025 09:56:02 GMT
- Title: PCM-SAR: Physics-Driven Contrastive Mutual Learning for SAR Classification
- Authors: Pengfei Wang, Hao Zheng, Zhigang Hu, Aikun Xu, Meiguang Zheng, Liu Yang,
- Abstract summary: We propose Physics-Driven Contrastive Mutual Learning for SAR Classification (PCM-SAR)<n>PCM-SAR incorporates domain-specific physical insights to improve sample generation and feature extraction.<n> Experimental results show that PCM-SAR consistently outperforms SOTA methods across diverse datasets and SAR classification tasks.
- Score: 11.843038108782046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing SAR image classification methods based on Contrastive Learning often rely on sample generation strategies designed for optical images, failing to capture the distinct semantic and physical characteristics of SAR data. To address this, we propose Physics-Driven Contrastive Mutual Learning for SAR Classification (PCM-SAR), which incorporates domain-specific physical insights to improve sample generation and feature extraction. PCM-SAR utilizes the gray-level co-occurrence matrix (GLCM) to simulate realistic noise patterns and applies semantic detection for unsupervised local sampling, ensuring generated samples accurately reflect SAR imaging properties. Additionally, a multi-level feature fusion mechanism based on mutual learning enables collaborative refinement of feature representations. Notably, PCM-SAR significantly enhances smaller models by refining SAR feature representations, compensating for their limited capacity. Experimental results show that PCM-SAR consistently outperforms SOTA methods across diverse datasets and SAR classification tasks.
Related papers
- $\mathbfΦ$-GAN: Physics-Inspired GAN for Generating SAR Images Under Limited Data [45.83064997810622]
We propose a physics-inspired regularization method dubbed $Phi$-GAN for synthetic aperture radar (SAR) images.
The PSC model approximates SAR targets using physical parameters, ensuring that $Phi$-GAN generates SAR images consistent with real physical properties.
We evaluate $Phi$-GAN across several conditional GAN (cGAN) models, demonstrating state-of-the-art performance in data-scarce scenarios.
arXiv Detail & Related papers (2025-03-04T03:32:11Z) - SAR-W-MixMAE: SAR Foundation Model Training Using Backscatter Power Weighting [3.618534280726541]
Foundation model approaches such as masked auto-encoders (MAE) or its variations are now being successfully applied to satellite imagery.<n>Due to difficulty in semantic labeling to create datasets and higher noise content with respect to optical images, Synthetic Aperture Radar (SAR) data has not been explored a lot in the field for foundation models.<n>In this work, we explored masked auto-encoder, specifically MixMAE on Sentinel-1 SAR images and its impact on SAR image classification tasks.
arXiv Detail & Related papers (2025-03-03T05:09:44Z) - Predicting Satisfied User and Machine Ratio for Compressed Images: A Unified Approach [58.71009078356928]
We create a deep learning-based model to predict Satisfied User Ratio (SUR) and Satisfied Machine Ratio (SMR) of compressed images simultaneously.<n> Experimental results indicate that the proposed model significantly outperforms state-of-the-art SUR and SMR prediction methods.
arXiv Detail & Related papers (2024-12-23T11:09:30Z) - PolSAM: Polarimetric Scattering Mechanism Informed Segment Anything Model [76.95536611263356]
PolSAR data presents unique challenges due to its rich and complex characteristics.<n>Existing data representations, such as complex-valued data, polarimetric features, and amplitude images, are widely used.<n>Most feature extraction networks for PolSAR are small, limiting their ability to capture features effectively.<n>We propose the Polarimetric Scattering Mechanism-Informed SAM (PolSAM), an enhanced Segment Anything Model (SAM) that integrates domain-specific scattering characteristics and a novel prompt generation strategy.
arXiv Detail & Related papers (2024-12-17T09:59:53Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Algorithmic Hallucinations of Near-Surface Winds: Statistical
Downscaling with Generative Adversarial Networks to Convection-Permitting
Scales [0.0]
We focus on convolutional neural network-based Generative Adversarial Networks (GANs)
Our GANs are conditioned on low-resolution (LR) inputs to generate high-resolution (HR) surface winds emulating Weather Research and Forecasting model simulations over North America.
Our study builds upon current SR-based statistical downscaling by experimenting with a novel frequency-separation (FS) approach from the computer vision field.
arXiv Detail & Related papers (2023-02-17T06:29:12Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Two-Stage Self-Supervised Cycle-Consistency Network for Reconstruction
of Thin-Slice MR Images [62.4428833931443]
The thick-slice magnetic resonance (MR) images are often structurally blurred in coronal and sagittal views.
Deep learning has shown great potential to re-construct the high-resolution (HR) thin-slice MR images from those low-resolution (LR) cases.
We propose a novel Two-stage Self-supervised Cycle-consistency Network (TSCNet) for MR slice reconstruction.
arXiv Detail & Related papers (2021-06-29T13:29:18Z) - A Feature Fusion-Net Using Deep Spatial Context Encoder and
Nonstationary Joint Statistical Model for High Resolution SAR Image
Classification [10.152675581771113]
A novel end-to-end supervised classification method is proposed for HR SAR images.
To extract more effective spatial features, a new deep spatial context encoder network (DSCEN) is proposed.
To enhance the diversity of statistics, the nonstationary joint statistical model (NS-JSM) is adopted to form the global statistical features.
arXiv Detail & Related papers (2021-05-11T06:20:14Z) - Multi-Objective CNN Based Algorithm for SAR Despeckling [1.933681537640272]
This paper proposes a convolutional neural network (CNN) with a multi-objective cost function taking care of SAR image properties.
Experiments on simulated and real SAR images show the accuracy of the proposed method compared to the State-of-Art despeckling algorithms.
arXiv Detail & Related papers (2020-06-16T10:15:42Z) - Learning Sampling and Model-Based Signal Recovery for Compressed Sensing
MRI [30.838990115880197]
Compressed sensing (CS) MRI relies on adequate undersampling of the k-space to accelerate the acquisition without compromising image quality.
We propose joint learning of both task-adaptive k-space sampling and a subsequent model-based proximal-gradient recovery network.
The proposed combination of a highly flexible sampling model and a model-based (sampling-adaptive) image reconstruction network facilitates exploration and efficient training, yielding improved MR image quality.
arXiv Detail & Related papers (2020-04-22T12:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.