Conditional Independence Test Based on Transport Maps
- URL: http://arxiv.org/abs/2504.09567v1
- Date: Sun, 13 Apr 2025 13:38:25 GMT
- Title: Conditional Independence Test Based on Transport Maps
- Authors: Chenxuan He, Yuan Gao, Liping Zhu, Jian Huang,
- Abstract summary: We propose a novel framework for testing conditional independence using transport maps.<n>At the population level, we show that two well-defined transport maps can transform the conditional independence test into an unconditional independence test.<n>A permutation-based procedure is employed to evaluate the significance of the test.
- Score: 9.039406432084578
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Testing conditional independence between two random vectors given a third is a fundamental and challenging problem in statistics, particularly in multivariate nonparametric settings due to the complexity of conditional structures. We propose a novel framework for testing conditional independence using transport maps. At the population level, we show that two well-defined transport maps can transform the conditional independence test into an unconditional independence test, this substantially simplifies the problem. These transport maps are estimated from data using conditional continuous normalizing flow models. Within this framework, we derive a test statistic and prove its consistency under both the null and alternative hypotheses. A permutation-based procedure is employed to evaluate the significance of the test. We validate the proposed method through extensive simulations and real-data analysis. Our numerical studies demonstrate the practical effectiveness of the proposed method for conditional independence testing.
Related papers
- General Frameworks for Conditional Two-Sample Testing [3.3317825075368908]
We study the problem of conditional two-sample testing, which aims to determine whether two populations have the same distribution after accounting for confounding factors.
This problem commonly arises in various applications, such as domain adaptation and algorithmic fairness.
We introduce two general frameworks that implicitly or explicitly target specific classes of distributions for their validity and power.
arXiv Detail & Related papers (2024-10-22T02:27:32Z) - Practical Kernel Tests of Conditional Independence [34.7957227546996]
A major challenge of conditional independence testing is to obtain the correct test level while still attaining competitive test power.
We propose three methods for bias control to correct the test level, based on data splitting, auxiliary data, and (where possible) simpler function classes.
arXiv Detail & Related papers (2024-02-20T18:07:59Z) - Sequential Predictive Two-Sample and Independence Testing [114.4130718687858]
We study the problems of sequential nonparametric two-sample and independence testing.
We build upon the principle of (nonparametric) testing by betting.
arXiv Detail & Related papers (2023-04-29T01:30:33Z) - Sequential Kernelized Independence Testing [101.22966794822084]
We design sequential kernelized independence tests inspired by kernelized dependence measures.
We demonstrate the power of our approaches on both simulated and real data.
arXiv Detail & Related papers (2022-12-14T18:08:42Z) - Model-Free Sequential Testing for Conditional Independence via Testing
by Betting [8.293345261434943]
The proposed test allows researchers to analyze an incoming i.i.d. data stream with any arbitrary dependency structure.
We allow the processing of data points online as soon as they arrive and stop data acquisition once significant results are detected.
arXiv Detail & Related papers (2022-10-01T20:05:33Z) - Robust Continual Test-time Adaptation: Instance-aware BN and
Prediction-balanced Memory [58.72445309519892]
We present a new test-time adaptation scheme that is robust against non-i.i.d. test data streams.
Our novelty is mainly two-fold: (a) Instance-Aware Batch Normalization (IABN) that corrects normalization for out-of-distribution samples, and (b) Prediction-balanced Reservoir Sampling (PBRS) that simulates i.i.d. data stream from non-i.i.d. stream in a class-balanced manner.
arXiv Detail & Related papers (2022-08-10T03:05:46Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - An $\ell^p$-based Kernel Conditional Independence Test [21.689461247198388]
We propose a new computationally efficient test for conditional independence based on the $Lp$ distance between two kernel-based representatives of well suited distributions.
We conduct a series of experiments showing that the performance of our new tests outperforms state-of-the-art methods both in term of statistical power and type-I error even in the high dimensional setting.
arXiv Detail & Related papers (2021-10-28T03:18:27Z) - Data-Driven Representations for Testing Independence: Modeling, Analysis
and Connection with Mutual Information Estimation [3.9023554886892433]
This work addresses testing the independence of two continuous and finite-dimensional random variables from the design of a data-driven partition.
It is shown that approximating the sufficient statistics of an oracle test offers a learning criterion for designing a data-driven partition.
Some experimental analyses provide evidence regarding our scheme's advantage for testing independence compared with some strategies that do not use data-driven representations.
arXiv Detail & Related papers (2021-10-27T02:06:05Z) - Two-Sample Testing on Ranked Preference Data and the Role of Modeling
Assumptions [57.77347280992548]
In this paper, we design two-sample tests for pairwise comparison data and ranking data.
Our test requires essentially no assumptions on the distributions.
By applying our two-sample test on real-world pairwise comparison data, we conclude that ratings and rankings provided by people are indeed distributed differently.
arXiv Detail & Related papers (2020-06-21T20:51:09Z) - Stable Prediction via Leveraging Seed Variable [73.9770220107874]
Previous machine learning methods might exploit subtly spurious correlations in training data induced by non-causal variables for prediction.
We propose a conditional independence test based algorithm to separate causal variables with a seed variable as priori, and adopt them for stable prediction.
Our algorithm outperforms state-of-the-art methods for stable prediction.
arXiv Detail & Related papers (2020-06-09T06:56:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.