論文の概要: Leveraging Reasoning Model Answers to Enhance Non-Reasoning Model Capability
- arxiv url: http://arxiv.org/abs/2504.09639v1
- Date: Sun, 13 Apr 2025 16:26:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:52:59.713883
- Title: Leveraging Reasoning Model Answers to Enhance Non-Reasoning Model Capability
- Title(参考訳): 非推論モデル能力向上のための推論モデル解答の活用
- Authors: Haotian Wang, Han Zhao, Shuaiting Chen, Xiaoyu Tian, Sitong Zhao, Yunjie Ji, Yiping Peng, Xiangang Li,
- Abstract要約: 我々は、推論集約モデルを利用して、計算負荷の少ない非推論モデルを改善することを提案する。
我々は、様々なベンチマークで一貫した改善を示し、モデルが直接質問に答える能力を向上するこのアプローチの可能性を強調した。
- 参考スコア(独自算出の注目度): 16.441081996257576
- License:
- Abstract: Recent advancements in large language models (LLMs), such as DeepSeek-R1 and OpenAI-o1, have demonstrated the significant effectiveness of test-time scaling, achieving substantial performance gains across various benchmarks. These advanced models utilize deliberate "thinking" steps to systematically enhance answer quality. In this paper, we propose leveraging these high-quality outputs generated by reasoning-intensive models to improve less computationally demanding, non-reasoning models. We explore and compare methodologies for utilizing the answers produced by reasoning models to train and improve non-reasoning models. Through straightforward Supervised Fine-Tuning (SFT) experiments on established benchmarks, we demonstrate consistent improvements across various benchmarks, underscoring the potential of this approach for advancing the ability of models to answer questions directly.
- Abstract(参考訳): DeepSeek-R1やOpenAI-o1といった大規模言語モデル(LLM)の最近の進歩は、テスト時間スケーリングの顕著な効果を示し、様々なベンチマークで大幅なパフォーマンス向上を実現している。
これらの先進的なモデルは、意図的な"思考"ステップを使用して、答えの品質を体系的に向上する。
本稿では、推論集約モデルによって生成されるこれらの高品質な出力を活用し、計算負荷の少ない非推論モデルを改善することを提案する。
推論モデルを用いた非推論モデルの学習と改善のための手法を探索し,比較する。
確立されたベンチマーク上でのSupervised Fine-Tuning (SFT) 実験を通じて、様々なベンチマーク間で一貫した改善を実証し、モデルが直接質問に答える能力を向上させるためのこのアプローチの可能性を強調した。
関連論文リスト
- Iterative Deepening Sampling for Large Language Models [27.807695570974644]
効果的な自己補正と自己補正を実現するためのトレーニングモデルは、依然として重要な課題である。
自己補正の強化と高品質なサンプル生成を目的とした,新しい反復サンプリングアルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-08T04:39:51Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
大規模言語モデル(LLM)は複雑な推論タスクにおいて顕著な機能を示した。
本稿では,新しいグラフィカルモデルを用いてLLM推論を定式化する統一確率的フレームワークを提案する。
本稿では,Bootstrapping Reinforced Thinking Process (BRiTE)アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2025-01-31T02:39:07Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
本稿では,複数の推論連鎖を比較するためにモデルを必要とすることによって,性能を向上する新しい手法を提案する。
DCoTデータセットの命令チューニングにより、より小さく、よりアクセスしやすい言語モデルの性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-07-03T15:01:18Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment [32.752633250862694]
生成基礎モデルは、広範囲の教師なしのトレーニングデータから生じる暗黙のバイアスに影響を受けやすい。
我々は、生成モデルを効果的に整合させるために設計された新しいフレームワーク、Reward rAnked FineTuningを紹介する。
論文 参考訳(メタデータ) (2023-04-13T18:22:40Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Which Model To Trust: Assessing the Influence of Models on the
Performance of Reinforcement Learning Algorithms for Continuous Control Tasks [0.0]
アルゴリズムの改善やモデルの改善による最近の進歩の程度は明らかになっていない。
モデル比較のために、一般的に採用されているモデルのセットが確立されている。
結果,モデル性能に有意な差が認められた。
論文 参考訳(メタデータ) (2021-10-25T16:17:26Z) - Sample Efficient Reinforcement Learning via Model-Ensemble Exploration
and Exploitation [3.728946517493471]
MEEEは楽観的な探索と重み付けによる搾取からなるモデルアンサンブル法である。
我々の手法は、特にサンプル複雑性において、他のモデルフリーおよびモデルベース最先端手法よりも優れています。
論文 参考訳(メタデータ) (2021-07-05T07:18:20Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
モデルベースエージェントは,サンプル効率と最終報酬の両方の観点から,最先端のモデルフリーエージェントより優れていることを示す。
以上の結果から,モデルに基づく政策評価がより注目に値することが示唆された。
論文 参考訳(メタデータ) (2020-08-28T17:58:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。