論文の概要: SegEarth-R1: Geospatial Pixel Reasoning via Large Language Model
- arxiv url: http://arxiv.org/abs/2504.09644v1
- Date: Sun, 13 Apr 2025 16:36:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:51:56.276681
- Title: SegEarth-R1: Geospatial Pixel Reasoning via Large Language Model
- Title(参考訳): SegEarth-R1:大規模言語モデルによる地理空間画素推論
- Authors: Kaiyu Li, Zepeng Xin, Li Pang, Chao Pang, Yupeng Deng, Jing Yao, Guisong Xia, Deyu Meng, Zhi Wang, Xiangyong Cao,
- Abstract要約: 暗黙的な問合せと推論を可能にし,対象領域のマスクを生成する新しいタスク,すなわち地理空間的画素推論を導入する。
我々は,5,434枚の手動アノテート画像マスクと3万枚以上の暗黙的な質問応答ペアからなる,EarthReasonという,最初の大規模ベンチマークデータセットを構築し,リリースする。
SegEarth-R1は、推論タスクと参照セグメンテーションタスクの両方で最先端のパフォーマンスを実現し、従来のLCMベースのセグメンテーション手法よりも大幅に優れている。
- 参考スコア(独自算出の注目度): 61.97017867656831
- License:
- Abstract: Remote sensing has become critical for understanding environmental dynamics, urban planning, and disaster management. However, traditional remote sensing workflows often rely on explicit segmentation or detection methods, which struggle to handle complex, implicit queries that require reasoning over spatial context, domain knowledge, and implicit user intent. Motivated by this, we introduce a new task, \ie, geospatial pixel reasoning, which allows implicit querying and reasoning and generates the mask of the target region. To advance this task, we construct and release the first large-scale benchmark dataset called EarthReason, which comprises 5,434 manually annotated image masks with over 30,000 implicit question-answer pairs. Moreover, we propose SegEarth-R1, a simple yet effective language-guided segmentation baseline that integrates a hierarchical visual encoder, a large language model (LLM) for instruction parsing, and a tailored mask generator for spatial correlation. The design of SegEarth-R1 incorporates domain-specific adaptations, including aggressive visual token compression to handle ultra-high-resolution remote sensing images, a description projection module to fuse language and multi-scale features, and a streamlined mask prediction pipeline that directly queries description embeddings. Extensive experiments demonstrate that SegEarth-R1 achieves state-of-the-art performance on both reasoning and referring segmentation tasks, significantly outperforming traditional and LLM-based segmentation methods. Our data and code will be released at https://github.com/earth-insights/SegEarth-R1.
- Abstract(参考訳): リモートセンシングは、環境力学、都市計画、災害管理を理解するために重要になっている。
しかし、従来のリモートセンシングワークフローは、空間コンテキストやドメイン知識、暗黙のユーザ意図に対する推論を必要とする複雑な暗黙のクエリを扱うのに苦労する、明示的なセグメンテーションや検出方法に依存していることが多い。
そこで本研究では,暗黙的な問合せと推論を可能にし,対象領域のマスクを生成する新しいタスク,‘ie, geospatial pixel reasoning’を導入する。
このタスクを進めるために,5,434枚の手動アノテート画像マスクと3万枚以上の暗黙的な質問応答ペアからなる,EarthReasonという,最初の大規模ベンチマークデータセットを構築し,リリースする。
さらに、階層型ビジュアルエンコーダと命令解析用大言語モデル(LLM)と空間相関のための調整マスク生成機能を組み合わせた、シンプルで効果的な言語誘導セグメンテーションベースラインであるSegEarth-R1を提案する。
SegEarth-R1の設計には、超高解像度リモートセンシング画像を処理するためのアグレッシブなビジュアルトークン圧縮、ヒューズ言語とマルチスケール機能のための記述プロジェクションモジュール、埋め込み記述を直接クエリする合理化マスク予測パイプラインなど、ドメイン固有の適応が含まれている。
大規模な実験により、SegEarth-R1は推論タスクと参照セグメンテーションタスクの両方で最先端のパフォーマンスを達成し、従来手法とLLM方式のセグメンテーション手法を大幅に上回った。
我々のデータとコードはhttps://github.com/earth-insights/SegEarth-R1で公開される。
関連論文リスト
- RSRefSeg: Referring Remote Sensing Image Segmentation with Foundation Models [24.67117013862316]
リモートセンシング画像のセグメンテーションの参照は、きめ細かい視覚的理解の実現に不可欠である。
本稿では,参照リモートセンシング画像分割基礎モデルRSRefSegを紹介する。
RRSIS-Dデータセットの実験結果は、RSRefSegが既存の手法より優れていることを示している。
論文 参考訳(メタデータ) (2025-01-12T13:22:35Z) - Scale-wise Bidirectional Alignment Network for Referring Remote Sensing Image Segmentation [12.893224628061516]
リモートセンシング画像セグメンテーション(RRSIS)の目的は、自然言語表現を用いて、空中画像内の特定のピクセルレベル領域を抽出することである。
本稿では,これらの課題に対処するため,SBANet(Scale-wise Bidirectional Alignment Network)と呼ばれる革新的なフレームワークを提案する。
提案手法は,RRSIS-DとRefSegRSのデータセットにおける従来の最先端手法と比較して,優れた性能を実現する。
論文 参考訳(メタデータ) (2025-01-01T14:24:04Z) - RG-SAN: Rule-Guided Spatial Awareness Network for End-to-End 3D Referring Expression Segmentation [72.95147072227998]
3D参照式は、参照式と点雲を関連付けて3Dオブジェクトをセグメントすることを目的としている。
従来のアプローチでは、インスタンスの空間情報に重点が置かれていないため、過剰なセグメンテーションや誤ったセグメンテーションといった問題に頻繁に遭遇する。
本稿では,ルールガイド型空間認識ネットワーク(RG-SAN)を導入する。
論文 参考訳(メタデータ) (2024-12-03T11:50:16Z) - GeoGround: A Unified Large Vision-Language Model for Remote Sensing Visual Grounding [31.01378033872341]
GeoGroundは、HBB、OBB、マスクRSビジュアルグラウンドタスクのサポートを統合する新しいフレームワークである。
モデルトレーニングを支援するために,161kの画像テキストペアを含む大規模RS視覚指示追従データセットrefGeoを提案する。
論文 参考訳(メタデータ) (2024-11-16T05:12:11Z) - GLaMM: Pixel Grounding Large Multimodal Model [57.91763410032292]
本研究では,対応するオブジェクトセグメンテーションマスクとシームレスに相互作用する自然言語応答を生成可能な最初のモデルであるGrounding LMM(GLaMM)を提案する。
GLaMMはテキストとオプションの視覚的プロンプト(関心領域)の両方を入力として受け入れるほど柔軟である。
提案したGCGタスクは,大規模に自然界に密着した概念を必要とする。
論文 参考訳(メタデータ) (2023-11-06T18:59:57Z) - RRSIS: Referring Remote Sensing Image Segmentation [25.538406069768662]
リモートセンシング画像から所望のオブジェクトをローカライズすることは、実用的な用途において非常に有用である。
与えられた表現が参照する対象を分割することを目的とした画像分割の参照は、自然画像において広範囲に研究されている。
本稿では、このギャップを埋めるため、リモートセンシング画像セグメンテーション(RRSIS)を紹介し、洞察に富んだ探索を行う。
論文 参考訳(メタデータ) (2023-06-14T16:40:19Z) - Zero-shot Referring Image Segmentation with Global-Local Context
Features [8.77461711080319]
参照画像セグメンテーション(RIS)は、入力画像の領域に接する参照表現を与えられたセグメンテーションマスクを見つけることを目的としている。
本稿では,CLIPから事前学習したクロスモーダル知識を利用した,シンプルで効果的なゼロショット参照画像セグメンテーション法を提案する。
実験では,提案手法は,タスクのゼロショットベースラインや,弱教師付き参照表現セグメンテーションにおいても,かなりのマージンで性能を向上する。
論文 参考訳(メタデータ) (2023-03-31T06:00:50Z) - Fully and Weakly Supervised Referring Expression Segmentation with
End-to-End Learning [50.40482222266927]
Referring Expression(RES)は、与えられた言語表現に従ってターゲットをローカライズし、セグメンテーションすることを目的としている。
そこで我々は,カーネル分割パイプラインを並列に構築し,より分離し,局所化とセグメント化のステップと相互作用する。
我々の手法は単純だが驚くほど効果的であり、完全に教師された設定と弱い設定において、従来の最先端のRES手法よりも優れている。
論文 参考訳(メタデータ) (2022-12-17T08:29:33Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
航空画像のセグメンテーションにはいくつかの独特な課題があり、中でも最も重要なものは前景と背景のアンバランスにある。
本稿では,階層的なセグメンテーション手法を採用し,マルチスケール表現を適応的に活用するAdaptive Focus Framework (AF$)を提案する。
AF$は、広く使われている3つの航空ベンチマークの精度を大幅に改善した。
論文 参考訳(メタデータ) (2022-02-18T10:14:45Z) - Locate then Segment: A Strong Pipeline for Referring Image Segmentation [73.19139431806853]
参照画像セグメンテーションは、自然言語表現によって参照されるオブジェクトをセグメンテーションすることを目的とする。
従来の方法は、視覚言語機能を融合させ、最終的なセグメンテーションマスクを直接生成するための暗黙的および反復的な相互作用メカニズムの設計に焦点を当てています。
これらの問題に取り組むための「Then-Then-Segment」スキームを紹介します。
私たちのフレームワークはシンプルですが驚くほど効果的です。
論文 参考訳(メタデータ) (2021-03-30T12:25:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。