RANSAC Revisited: An Improved Algorithm for Robust Subspace Recovery under Adversarial and Noisy Corruptions
- URL: http://arxiv.org/abs/2504.09648v1
- Date: Sun, 13 Apr 2025 16:47:03 GMT
- Title: RANSAC Revisited: An Improved Algorithm for Robust Subspace Recovery under Adversarial and Noisy Corruptions
- Authors: Guixian Chen, Jianhao Ma, Salar Fattahi,
- Abstract summary: We aim to recover a low-dimensional subspace that approximately contains a significant fraction of the uncorrupted samples.<n>Existing approaches to this problem often suffer from high computational costs or rely on restrictive distributional assumptions.<n>We propose a two-stage algorithm, RANSAC+, that precisely pinpoints and remedies the failure modes of standard RANSAC.
- Score: 16.45408984254899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we study the problem of robust subspace recovery (RSR) in the presence of both strong adversarial corruptions and Gaussian noise. Specifically, given a limited number of noisy samples -- some of which are tampered by an adaptive and strong adversary -- we aim to recover a low-dimensional subspace that approximately contains a significant fraction of the uncorrupted samples, up to an error that scales with the Gaussian noise. Existing approaches to this problem often suffer from high computational costs or rely on restrictive distributional assumptions, limiting their applicability in truly adversarial settings. To address these challenges, we revisit the classical random sample consensus (RANSAC) algorithm, which offers strong robustness to adversarial outliers, but sacrifices efficiency and robustness against Gaussian noise and model misspecification in the process. We propose a two-stage algorithm, RANSAC+, that precisely pinpoints and remedies the failure modes of standard RANSAC. Our method is provably robust to both Gaussian and adversarial corruptions, achieves near-optimal sample complexity without requiring prior knowledge of the subspace dimension, and is more efficient than existing RANSAC-type methods.
Related papers
- Empirical Bound Information-Directed Sampling for Norm-Agnostic Bandits [0.0]
We introduce a novel frequentist IDS algorithm that iteratively refines a high-probability upper bound on the true parameter norm using accumulating data.<n>We establish regret bounds for our algorithm that do not depend on an initially assumed parameter norm bound and demonstrate that our method outperforms state-of-the-art IDS and UCB algorithms.
arXiv Detail & Related papers (2025-03-07T02:33:37Z) - ROPO: Robust Preference Optimization for Large Language Models [59.10763211091664]
We propose an iterative alignment approach that integrates noise-tolerance and filtering of noisy samples without the aid of external models.
Experiments on three widely-used datasets with Mistral-7B and Llama-2-7B demonstrate that ROPO significantly outperforms existing preference alignment methods.
arXiv Detail & Related papers (2024-04-05T13:58:51Z) - STBA: Towards Evaluating the Robustness of DNNs for Query-Limited Black-box Scenario [50.37501379058119]
We propose the Spatial Transform Black-box Attack (STBA) to craft formidable adversarial examples in the query-limited scenario.
We show that STBA could effectively improve the imperceptibility of the adversarial examples and remarkably boost the attack success rate under query-limited settings.
arXiv Detail & Related papers (2024-03-30T13:28:53Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian
Process Bandits [118.22458816174144]
We propose a novel robust elimination-type algorithm that runs in epochs, combines exploration with infrequent switching to select a small subset of actions, and plays each action for multiple time instants.
Our algorithm, GP Robust Phased Elimination (RGP-PE), successfully balances robustness to corruptions with exploration and exploitation.
We perform the first empirical study of robustness in the corrupted GP bandit setting, and show that our algorithm is robust against a variety of adversarial attacks.
arXiv Detail & Related papers (2022-02-03T21:19:36Z) - An Empirical Process Approach to the Union Bound: Practical Algorithms
for Combinatorial and Linear Bandits [34.06611065493047]
This paper proposes near-optimal algorithms for the pure-exploration linear bandit problem in the fixed confidence and fixed budget settings.
We provide an algorithm whose sample complexity scales with the geometry of the instance and avoids an explicit union bound over the number of arms.
We also propose the first algorithm for linear bandits in the the fixed budget setting.
arXiv Detail & Related papers (2020-06-21T00:56:33Z) - Corruption-Tolerant Gaussian Process Bandit Optimization [130.60115798580136]
We consider the problem of optimizing an unknown (typically non-producing) function with a bounded norm.
We introduce an algorithm based on Fast-Slow GP-UCB based on "fast but non-robust" and "slow"
We argue that certain dependencies cannot be required depending on the corruption level.
arXiv Detail & Related papers (2020-03-04T09:46:58Z) - The Simulator: Understanding Adaptive Sampling in the
Moderate-Confidence Regime [52.38455827779212]
We propose a novel technique for analyzing adaptive sampling called the em Simulator.
We prove the first instance-based lower bounds the top-k problem which incorporate the appropriate log-factors.
Our new analysis inspires a simple and near-optimal for the best-arm and top-k identification, the first em practical of its kind for the latter problem.
arXiv Detail & Related papers (2017-02-16T23:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.