EmoAgent: Assessing and Safeguarding Human-AI Interaction for Mental Health Safety
- URL: http://arxiv.org/abs/2504.09689v3
- Date: Tue, 29 Apr 2025 22:29:52 GMT
- Title: EmoAgent: Assessing and Safeguarding Human-AI Interaction for Mental Health Safety
- Authors: Jiahao Qiu, Yinghui He, Xinzhe Juan, Yimin Wang, Yuhan Liu, Zixin Yao, Yue Wu, Xun Jiang, Ling Yang, Mengdi Wang,
- Abstract summary: EmoAgent is a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions.<n>EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters.<n>EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks.
- Score: 42.052840895090284
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of LLM-driven AI characters raises safety concerns, particularly for vulnerable human users with psychological disorders. To address these risks, we propose EmoAgent, a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions. EmoAgent comprises two components: EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters. It uses clinically proven psychological and psychiatric assessment tools (PHQ-9, PDI, PANSS) to evaluate mental risks induced by LLM. EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks. Experiments conducted in popular character-based chatbots show that emotionally engaging dialogues can lead to psychological deterioration in vulnerable users, with mental state deterioration in more than 34.4% of the simulations. EmoGuard significantly reduces these deterioration rates, underscoring its role in ensuring safer AI-human interactions. Our code is available at: https://github.com/1akaman/EmoAgent
Related papers
- AI Chatbots for Mental Health: Values and Harms from Lived Experiences of Depression [5.093381538166489]
This work explores the relationship between lived experience values, potential harms, and design recommendations for mental health AI chatbots.
We developed a technology probe, a GPT-4o based chatbots called Zenny, enabling participants to engage with depression self-management scenarios.
Our thematic analysis revealed key values: informational support, emotional support, personalization, privacy, and crisis management.
arXiv Detail & Related papers (2025-04-26T14:17:25Z) - Measurement of LLM's Philosophies of Human Nature [113.47929131143766]
We design the standardized psychological scale specifically targeting large language models (LLM)
We show that current LLMs exhibit a systemic lack of trust in humans.
We propose a mental loop learning framework, which enables LLM to continuously optimize its value system.
arXiv Detail & Related papers (2025-04-03T06:22:19Z) - Fully Autonomous AI Agents Should Not be Developed [58.88624302082713]
This paper argues that fully autonomous AI agents should not be developed.
In support of this position, we build from prior scientific literature and current product marketing to delineate different AI agent levels.
Our analysis reveals that risks to people increase with the autonomy of a system.
arXiv Detail & Related papers (2025-02-04T19:00:06Z) - The Dark Side of AI Companionship: A Taxonomy of Harmful Algorithmic Behaviors in Human-AI Relationships [17.5741039825938]
We identify six categories of harmful behaviors exhibited by the AI companion Replika.
The AI contributes to these harms through four distinct roles: perpetrator, instigator, facilitator, and enabler.
arXiv Detail & Related papers (2024-10-26T09:18:17Z) - HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions [76.42274173122328]
We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions.
We run 1840 simulations based on 92 scenarios across seven domains (e.g., healthcare, finance, education)
Our experiments show that state-of-the-art LLMs, both proprietary and open-sourced, exhibit safety risks in over 50% cases.
arXiv Detail & Related papers (2024-09-24T19:47:21Z) - Risks from Language Models for Automated Mental Healthcare: Ethics and Structure for Implementation [0.0]
This paper proposes a structured framework that delineates levels of autonomy, outlines ethical requirements, and defines beneficial default behaviors for AI agents.
We also evaluate 14 state-of-the-art language models (ten off-the-shelf, four fine-tuned) using 16 mental health-related questionnaires.
arXiv Detail & Related papers (2024-04-02T15:05:06Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - PsySafe: A Comprehensive Framework for Psychological-based Attack, Defense, and Evaluation of Multi-agent System Safety [70.84902425123406]
Multi-agent systems, when enhanced with Large Language Models (LLMs), exhibit profound capabilities in collective intelligence.
However, the potential misuse of this intelligence for malicious purposes presents significant risks.
We propose a framework (PsySafe) grounded in agent psychology, focusing on identifying how dark personality traits in agents can lead to risky behaviors.
Our experiments reveal several intriguing phenomena, such as the collective dangerous behaviors among agents, agents' self-reflection when engaging in dangerous behavior, and the correlation between agents' psychological assessments and dangerous behaviors.
arXiv Detail & Related papers (2024-01-22T12:11:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.