Computer-Aided Layout Generation for Building Design: A Review
- URL: http://arxiv.org/abs/2504.09694v1
- Date: Sun, 13 Apr 2025 19:00:53 GMT
- Title: Computer-Aided Layout Generation for Building Design: A Review
- Authors: Jiachen Liu, Yuan Xue, Haomiao Ni, Rui Yu, Zihan Zhou, Sharon X. Huang,
- Abstract summary: In this paper, we conduct a review of three major research topics of architecture layout design and generation.<n>For each topic, we present an overview of the leading paradigms, categorized either by research domains (architecture or machine learning) or by user input conditions or constraints.
- Score: 18.703604111298695
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating realistic building layouts for automatic building design has been studied in both the computer vision and architecture domains. Traditional approaches from the architecture domain, which are based on optimization techniques or heuristic design guidelines, can synthesize desirable layouts, but usually require post-processing and involve human interaction in the design pipeline, making them costly and timeconsuming. The advent of deep generative models has significantly improved the fidelity and diversity of the generated architecture layouts, reducing the workload by designers and making the process much more efficient. In this paper, we conduct a comprehensive review of three major research topics of architecture layout design and generation: floorplan layout generation, scene layout synthesis, and generation of some other formats of building layouts. For each topic, we present an overview of the leading paradigms, categorized either by research domains (architecture or machine learning) or by user input conditions or constraints. We then introduce the commonly-adopted benchmark datasets that are used to verify the effectiveness of the methods, as well as the corresponding evaluation metrics. Finally, we identify the well-solved problems and limitations of existing approaches, then propose new perspectives as promising directions for future research in this important research area. A project associated with this survey to maintain the resources is available at awesome-building-layout-generation.
Related papers
- Multi-View Depth Consistent Image Generation Using Generative AI Models: Application on Architectural Design of University Buildings [20.569648863933285]
We propose a novel three-stage consistent image generation framework using generative AI models.<n>We employ ControlNet as the backbone and optimize it to accommodate multi-view inputs of architectural shoebox models.<n> Experimental results demonstrate that the proposed framework can generate multi-view architectural images with consistent style and structural coherence.
arXiv Detail & Related papers (2025-03-05T00:16:09Z) - SE-VGAE: Unsupervised Disentangled Representation Learning for Interpretable Architectural Layout Design Graph Generation [0.0]
We introduce an unsupervised disentangled representation learning framework, Style-based Edge-augmented Variational Graph Auto-Encoder.
The framework generates architectural layout in the form of attributed adjacency multi-graphs while prioritizing representation disentanglement.
We contribute a new benchmark large-scale architectural layout graph dataset extracted from real-world floor plan images.
arXiv Detail & Related papers (2024-06-25T09:40:47Z) - PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
Our research introduces a unified framework for automated graphic layout generation.<n>Our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts.<n>We develop an automated text-to-poster system that generates editable posters based on users' design intentions.
arXiv Detail & Related papers (2024-06-05T03:05:52Z) - Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient [52.2669490431145]
PropEn is inspired by'matching', which enables implicit guidance without training a discriminator.
We show that training with a matched dataset approximates the gradient of the property of interest while remaining within the data distribution.
arXiv Detail & Related papers (2024-05-28T11:30:19Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
This survey offers a comprehensive overview of learning-based methods in computer-aided design.
It includes similarity analysis and retrieval, 2D and 3D CAD model synthesis, and CAD generation from point clouds.
It provides a complete list of benchmark datasets and their characteristics, along with open-source codes that have propelled research in this domain.
arXiv Detail & Related papers (2024-02-27T17:11:35Z) - LayoutDETR: Detection Transformer Is a Good Multimodal Layout Designer [80.61492265221817]
Graphic layout designs play an essential role in visual communication.
Yet handcrafting layout designs is skill-demanding, time-consuming, and non-scalable to batch production.
Generative models emerge to make design automation scalable but it remains non-trivial to produce designs that comply with designers' desires.
arXiv Detail & Related papers (2022-12-19T21:57:35Z) - Computer vision-based analysis of buildings and built environments: A
systematic review of current approaches [0.98314893665023]
This paper presents a first systematic review of the computer vision-based analysis of buildings and the built environments.
It reveals current research gaps and trends, and highlights two main categories of research aims.
arXiv Detail & Related papers (2022-08-01T14:17:51Z) - Structural Design Recommendations in the Early Design Phase using
Machine Learning [6.071146161035648]
ApproxiFramer is a Machine Learning-based system for the automatic generation of structural layouts from building plan sketches in real-time.
We trained a Convolutional Neural Net to iteratively generate structural design solutions for sketch-level building plans.
arXiv Detail & Related papers (2021-07-19T01:02:14Z) - A Design Space Study for LISTA and Beyond [79.76740811464597]
In recent years, great success has been witnessed in building problem-specific deep networks from unrolling iterative algorithms.
This paper revisits the role of unrolling as a design approach for deep networks, to what extent its resulting special architecture is superior, and can we find better?
Using LISTA for sparse recovery as a representative example, we conduct the first thorough design space study for the unrolled models.
arXiv Detail & Related papers (2021-04-08T23:01:52Z) - House-GAN++: Generative Adversarial Layout Refinement Networks [37.60108582423617]
Our architecture is an integration of a graph-constrained GAN and a conditional GAN, where a previously generated layout becomes the next input constraint.
A surprising discovery of our research is that a simple non-iterative training process, dubbed component-wise GT-conditioning, is effective in learning such a generator.
arXiv Detail & Related papers (2021-03-03T18:15:52Z) - House-GAN: Relational Generative Adversarial Networks for
Graph-constrained House Layout Generation [59.86153321871127]
The main idea is to encode the constraint into the graph structure of its relational networks.
We have demonstrated the proposed architecture for a new house layout generation problem.
arXiv Detail & Related papers (2020-03-16T03:16:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.