Computer vision-based analysis of buildings and built environments: A
systematic review of current approaches
- URL: http://arxiv.org/abs/2208.00881v1
- Date: Mon, 1 Aug 2022 14:17:51 GMT
- Title: Computer vision-based analysis of buildings and built environments: A
systematic review of current approaches
- Authors: Ma{\l}gorzata B. Starzy\'nska, Robin Roussel, Sam Jacoby, Ali
Asadipour
- Abstract summary: This paper presents a first systematic review of the computer vision-based analysis of buildings and the built environments.
It reveals current research gaps and trends, and highlights two main categories of research aims.
- Score: 0.98314893665023
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Analysing 88 sources published from 2011 to 2021, this paper presents a first
systematic review of the computer vision-based analysis of buildings and the
built environments to assess its value to architectural and urban design
studies. Following a multi-stage selection process, the types of algorithms and
data sources used are discussed in respect to architectural applications such
as a building classification, detail classification, qualitative environmental
analysis, building condition survey, and building value estimation. This
reveals current research gaps and trends, and highlights two main categories of
research aims. First, to use or optimise computer vision methods for
architectural image data, which can then help automate time-consuming,
labour-intensive, or complex tasks of visual analysis. Second, to explore the
methodological benefits of machine learning approaches to investigate new
questions about the built environment by finding patterns and relationships
between visual, statistical, and qualitative data, which can overcome
limitations of conventional manual analysis. The growing body of research
offers new methods to architectural and design studies, with the paper
identifying future challenges and directions of research.
Related papers
- A Survey of Model Architectures in Information Retrieval [64.75808744228067]
We focus on two key aspects: backbone models for feature extraction and end-to-end system architectures for relevance estimation.
We trace the development from traditional term-based methods to modern neural approaches, particularly highlighting the impact of transformer-based models and subsequent large language models (LLMs)
We conclude by discussing emerging challenges and future directions, including architectural optimizations for performance and scalability, handling of multimodal, multilingual data, and adaptation to novel application domains beyond traditional search paradigms.
arXiv Detail & Related papers (2025-02-20T18:42:58Z) - A Systematic Mapping Study on Architectural Approaches to Software Performance Analysis [8.629569588488328]
This paper presents a systematic mapping study of 109 papers that integrate software architecture and performance analysis.
We focus on five research questions that provide guidance for researchers and practitioners to gain an in-depth understanding of this research area.
arXiv Detail & Related papers (2024-10-22T19:12:03Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Onologies are widely used for representing domain knowledge and meta data.
logical reasoning that can directly support are quite limited in learning, approximation and prediction.
One straightforward solution is to integrate statistical analysis and machine learning.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
Underwater image enhancement (UIE) presents a significant challenge within computer vision research.
Despite the development of numerous UIE algorithms, a thorough and systematic review is still absent.
arXiv Detail & Related papers (2024-05-30T04:46:40Z) - From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making.
Large foundation models, such as large language models, have revolutionized various natural language processing tasks.
This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis.
arXiv Detail & Related papers (2024-03-18T17:57:09Z) - From Requirements to Architecture: An AI-Based Journey to
Semi-Automatically Generate Software Architectures [2.4150871564195007]
We propose a method to generate software architecture candidates based on requirements using artificial intelligence techniques.
We further envision an automatic evaluation and trade-off analysis of the generated architecture candidates.
arXiv Detail & Related papers (2024-01-25T10:56:58Z) - Computer Vision Methods for the Microstructural Analysis of Materials:
The State-of-the-art and Future Perspectives [0.4595477728342621]
This review paper focuses on the state-of-the-art CNN-based techniques that have been applied to various multi-scale microstructural image analysis tasks.
We identify the main challenges with regard to the application of these methods to materials science research.
arXiv Detail & Related papers (2022-07-29T15:27:47Z) - Image Quality Assessment in the Modern Age [53.19271326110551]
This tutorial provides the audience with the basic theories, methodologies, and current progresses of image quality assessment (IQA)
We will first revisit several subjective quality assessment methodologies, with emphasis on how to properly select visual stimuli.
Both hand-engineered and (deep) learning-based methods will be covered.
arXiv Detail & Related papers (2021-10-19T02:38:46Z) - A Taxonomy and Archetypes of Business Analytics in Smart Manufacturing [0.0]
Business analytics is a key driver for smart manufacturing.
However, researchers and practitioners struggle to keep track of the progress and acquire new knowledge within the field.
We develop a quadripartite taxonomy as well as to derive archetypes of business analytics in smart manufacturing.
arXiv Detail & Related papers (2021-10-12T16:13:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.