論文の概要: SPICE: A Synergistic, Precise, Iterative, and Customizable Image Editing Workflow
- arxiv url: http://arxiv.org/abs/2504.09697v2
- Date: Thu, 16 Oct 2025 23:37:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 13:49:08.603148
- Title: SPICE: A Synergistic, Precise, Iterative, and Customizable Image Editing Workflow
- Title(参考訳): SPICE: 構文的、精密、反復的、カスタマイズ可能な画像編集ワークフロー
- Authors: Kenan Tang, Yanhong Li, Yao Qin,
- Abstract要約: 任意の解像度とアスペクト比を受け入れ、ユーザの要求を正確に追従し、100以上の編集ステップで画像品質を一貫して改善する、トレーニング不要のワークフローであるSPICEを紹介する。
挑戦的なリアルなイメージ編集データセットでは、SPICEは最先端のベースラインを定量的に上回り、人間のアノテータに一貫して好まれる。
- 参考スコア(独自算出の注目度): 13.815228931600236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompt-based models have demonstrated impressive prompt-following capability at image editing tasks. However, the models still struggle with following detailed editing prompts or performing local edits. Specifically, global image quality often deteriorates immediately after a single editing step. To address these challenges, we introduce SPICE, a training-free workflow that accepts arbitrary resolutions and aspect ratios, accurately follows user requirements, and consistently improves image quality during more than 100 editing steps, while keeping the unedited regions intact. By synergizing the strengths of a base diffusion model and a Canny edge ControlNet model, SPICE robustly handles free-form editing instructions from the user. On a challenging realistic image-editing dataset, SPICE quantitatively outperforms state-of-the-art baselines and is consistently preferred by human annotators. We release the workflow implementation for popular diffusion model Web UIs to support further research and artistic exploration.
- Abstract(参考訳): プロンプトベースのモデルは、画像編集タスクにおいて、印象的なプロンプトフォロー機能を示している。
しかし、モデルはまだ詳細な編集のプロンプトやローカル編集の実行に苦戦している。
特に、グローバル画像の品質は単一の編集ステップの直後に劣化することが多い。
これらの課題に対処するために,任意の解像度とアスペクト比を受け入れるトレーニングフリーワークフローであるSPICEを導入し,ユーザの要求を正確に追従し,100以上の編集ステップにおいて画像品質を継続的に改善し,未編集領域をそのまま維持する。
ベース拡散モデルとCanny edge ControlNetモデルの強度を相乗化することにより、SPICEはユーザからの自由形式の編集命令を強力に処理する。
挑戦的なリアルな画像編集データセットでは、SPICEは最先端のベースラインを定量的に上回り、人間のアノテータに一貫して好まれる。
一般的な拡散モデルWeb UIのためのワークフロー実装を公開し、さらなる研究と芸術的な探索を支援する。
関連論文リスト
- Image Editing As Programs with Diffusion Models [69.05164729625052]
本稿では,Diffusion Transformer (DiT) アーキテクチャ上に構築された統合画像編集フレームワークである IEAP (Image Editing As Programs) を紹介する。
IEAPは、複雑な編集命令を原子操作のシーケンスに分解して、リダミストレンズによる命令編集にアプローチする。
我々のフレームワークは、特に複雑なマルチステップ命令に対して、より優れた精度とセマンティック忠実度を提供する。
論文 参考訳(メタデータ) (2025-06-04T16:57:24Z) - PIXELS: Progressive Image Xemplar-based Editing with Latent Surgery [10.594261300488546]
PIXELSと呼ばれる,市販拡散モデルを用いたプログレッシブな例駆動編集のための新しいフレームワークを提案する。
PIXELSは編集のきめ細かい制御を提供し、ピクセルや領域レベルでの調整を可能にする。
我々は,PIXELSが高品質な編集を効率よく行うことを実証し,定量化と人的評価に顕著な改善をもたらすことを示した。
論文 参考訳(メタデータ) (2025-01-16T20:26:30Z) - AnyEdit: Mastering Unified High-Quality Image Editing for Any Idea [88.79769371584491]
我々は、総合的なマルチモーダル命令編集データセットであるAnyEditを提示する。
我々は,AnyEditコレクションの多様性と品質を,初期データ多様性,適応編集プロセス,自動編集結果の選択という3つの側面を通じて保証する。
3つのベンチマークデータセットの実験によると、AnyEditは拡散ベースの編集モデルのパフォーマンスを一貫して向上させる。
論文 参考訳(メタデータ) (2024-11-24T07:02:56Z) - Task-Oriented Diffusion Inversion for High-Fidelity Text-based Editing [60.730661748555214]
textbfTask-textbfOriented textbfDiffusion textbfInversion (textbfTODInv) は、特定の編集タスクに適した実際の画像を反転して編集する新しいフレームワークである。
ToDInvは相互最適化によってインバージョンと編集をシームレスに統合し、高い忠実さと正確な編集性を保証する。
論文 参考訳(メタデータ) (2024-08-23T22:16:34Z) - Streamlining Image Editing with Layered Diffusion Brushes [8.738398948669609]
我々のシステムは、ハイエンドの消費者向けGPUを使用して、140ミリ秒以内の512x512画像に1回の編集を行う。
提案手法は,オブジェクト属性の調整,エラー訂正,逐次的なプロンプトベースのオブジェクト配置と操作など,さまざまなタスクに対して有効性を示す。
論文 参考訳(メタデータ) (2024-05-01T04:30:03Z) - Customize your NeRF: Adaptive Source Driven 3D Scene Editing via
Local-Global Iterative Training [61.984277261016146]
テキスト記述や参照画像を編集プロンプトとして統合するCustomNeRFモデルを提案する。
最初の課題に取り組むために,前景領域編集とフルイメージ編集を交互に行うローカル・グローバル反復編集(LGIE)トレーニング手法を提案する。
第2の課題として、生成モデル内のクラス事前を利用して、一貫性の問題を緩和するクラス誘導正規化を設計する。
論文 参考訳(メタデータ) (2023-12-04T06:25:06Z) - Optimisation-Based Multi-Modal Semantic Image Editing [58.496064583110694]
本稿では,複数の編集命令型に対応するために,推論時編集の最適化を提案する。
各損失関数の影響を調整することで、ユーザの好みに合わせてフレキシブルな編集ソリューションを構築することができる。
本手法は,テキスト,ポーズ,スクリブルといった編集条件を用いて評価し,複雑な編集を行う能力を強調した。
論文 参考訳(メタデータ) (2023-11-28T15:31:11Z) - Emu Edit: Precise Image Editing via Recognition and Generation Tasks [62.95717180730946]
本稿では,マルチタスク画像編集モデルであるEmu Editについて述べる。
我々は、地域ベースの編集、自由形式の編集、コンピュータビジョンタスクなど、前例のない範囲でマルチタスクに訓練する。
Emu Editは画像インペイント、超解像、編集タスクの構成といった新しいタスクに、ラベル付き例で一般化できることを示す。
論文 参考訳(メタデータ) (2023-11-16T18:55:58Z) - LEDITS: Real Image Editing with DDPM Inversion and Semantic Guidance [0.0]
LEDITSはリアルタイム編集のための軽量なアプローチであり、Edit Friendly DDPMインバージョン技術とSemantic Guidanceを統合している。
このアプローチは、微妙で広範囲な編集や構成やスタイルの変更といった多彩な編集を実現すると同時に、アーキテクチャの最適化や拡張も必要としない。
論文 参考訳(メタデータ) (2023-07-02T09:11:09Z) - EditGAN: High-Precision Semantic Image Editing [120.49401527771067]
EditGANは高品質で高精度なセマンティック画像編集のための新しい手法である。
EditGANは前例のない細部と自由度で画像を操作可能であることを示す。
また、複数の編集を組み合わせることも簡単で、EditGANのトレーニングデータ以外の編集も可能になります。
論文 参考訳(メタデータ) (2021-11-04T22:36:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。