Nonequilibrium plasmon fluid in a Josephson junction chain
- URL: http://arxiv.org/abs/2504.09721v1
- Date: Sun, 13 Apr 2025 21:04:24 GMT
- Title: Nonequilibrium plasmon fluid in a Josephson junction chain
- Authors: Anton V. Bubis, Lucia Vigliotti, Maksym Serbyn, Andrew P. Higginbotham,
- Abstract summary: We probe the nonequilibrium kinetics of one-dimensional plasmons in a long chain of Josephson junctions.<n>We observe the evolution from pairwise coupling between plasma modes at weak driving to dramatic, high-order, cascaded couplings at strong driving.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Equilibrium quantum systems are often described by a collection of weakly-interacting normal modes. Bringing such systems far from equilibrium, however, can drastically enhance mode-to-mode interactions. Understanding the resulting quantum fluid is a fundamental question for quantum statistical mechanics, and a practical question for engineering driven quantum devices. To tackle this question, we probe the nonequilibrium kinetics of one-dimensional plasmons in a long chain of Josephson junctions. We introduce multimode spectroscopy to controllably study the departure from equilibrium, witnessing the evolution from pairwise coupling between plasma modes at weak driving to dramatic, high-order, cascaded couplings at strong driving. Scaling to many-mode drives, we stimulate interactions between hundreds of modes, resulting in near-continuum internal dynamics. Imaging the resulting nonequilibrium plasmon populations, we then resolve the non-local redistribution of energy in the response to a weak perturbation -- an explicit verification of the emergence of a strongly interacting, non-equilibrium fluid of plasmons.
Related papers
- Stabilizer entropy in non-integrable quantum evolutions [0.3277163122167434]
Entanglement and stabilizer entropy are involved in the onset of complex behavior in quantum many-body systems.<n>We study the dynamics of entanglement, stabilizer entropy, and a novel quantity assessing their interplay.
arXiv Detail & Related papers (2024-12-13T16:00:00Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Emergent Anomalous Hydrodynamics at Infinite Temperature in a Long-Range XXZ Model [14.297989605089663]
We find anomalous hydrodynamics in a spin-1/2 XXZ chain with power-law couplings.
We quantify the degree of quantum chaos using the Kullback-Leibler divergence.
This work offers another deep understanding of emergent anomalous transport phenomena in a wider range of non-integrable quantum many-body systems.
arXiv Detail & Related papers (2024-03-26T17:50:04Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Exact Solution for A Real Polaritonic System Under Vibrational Strong
Coupling in Thermodynamic Equilibrium: Absence of Zero Temperature and Loss
of Light-Matter Entanglement [0.0]
First exact quantum simulation of a real molecular system (HD$+$) under strong ro-vibrational coupling to a quantized optical cavity mode in thermal equilibrium is presented.
arXiv Detail & Related papers (2022-08-02T09:21:52Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Evolution of Quantum Nonequilibrium for Coupled Harmonic Oscillators [0.0]
We study the effects of interactions on quantum relaxation towards equilibrium for a system of one-dimensional coupled harmonic oscillators.
We show by numerical simulations that interactions can delay or even prevent complete relaxation for some initial states.
arXiv Detail & Related papers (2022-05-27T01:29:23Z) - Signatures of a quantum stabilized fluctuating phase and critical
dynamics in a kinetically-constrained open many-body system with two
absorbing states [0.0]
We introduce and investigate an open many-body quantum system in which kinetically coherent and dissipative processes compete.
Our work shows how the interplay between coherent and dissipative processes as well as constraints may lead to a highly intricate non-equilibrium evolution.
arXiv Detail & Related papers (2022-04-22T07:51:38Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.