Evolution of Quantum Nonequilibrium for Coupled Harmonic Oscillators
- URL: http://arxiv.org/abs/2205.13701v3
- Date: Sun, 15 Jan 2023 20:29:24 GMT
- Title: Evolution of Quantum Nonequilibrium for Coupled Harmonic Oscillators
- Authors: Francisco Bento Lustosa, Nelson Pinto-Neto and Antony Valentini
- Abstract summary: We study the effects of interactions on quantum relaxation towards equilibrium for a system of one-dimensional coupled harmonic oscillators.
We show by numerical simulations that interactions can delay or even prevent complete relaxation for some initial states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the context of de Broglie-Bohm pilot-wave theory, violations of the Born
rule are allowed and can be considered as describing nonequilibrium
distributions. We study the effects of interactions on quantum relaxation
towards equilibrium for a system of one-dimensional coupled harmonic
oscillators. We show by numerical simulations that interactions can delay or
even prevent complete relaxation for some initial states. We also discuss how
this effect might be relevant for cosmological scenarios and how nonequilibrium
could be detected in some models.
Related papers
- Observation of Nonlinear Response and Onsager Regression in a Photon Bose-Einstein Condensate [34.82692226532414]
The quantum regression theorem states that the correlations of a system at two different times are governed by the same equations of motion as the temporal response of the average values.
Here we experimentally demonstrate that the two-time particle number correlations in a photon Bose-Einstein condensate inside a dye-filled microcavity exhibit the same dynamics as the response of the condensate to a sudden perturbation of the dye molecule bath.
This confirms the regression theorem for a quantum gas and, moreover, establishes a test of this relation in an unconventional form where the perturbation acts on the bath and only the condensate response is monitored.
arXiv Detail & Related papers (2024-03-07T17:59:58Z) - Persistent non-Gaussian correlations in out-of-equilibrium Rydberg atom arrays [0.0]
We present a mechanism by which an initial state of a Rydberg atom array can retain persistent non-Gaussian correlations following a global quench.
These long-lived non-Gaussian states may have practical applications as quantum memories or stable resources for quantum-information protocols.
arXiv Detail & Related papers (2023-06-21T12:07:45Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Subdiffusive dynamics and critical quantum correlations in a
disorder-free localized Kitaev honeycomb model out of equilibrium [0.0]
Disorder-free localization has recently emerged as a mechanism for ergodicity breaking in homogeneous lattice gauge theories.
In this work we show that this mechanism can lead to unconventional states of quantum matter as the absence of thermalization lifts constraints imposed by equilibrium statistical physics.
arXiv Detail & Related papers (2020-12-10T15:39:17Z) - Phonon mediated non-equilibrium correlations and entanglement between
distant semiconducting qubits [0.0]
We study non-equilibrium correlations and entanglement between semiconductor qubits in a one-dimensional coupled-mechanical-resonator chain.
The results suggest that highly tunable correlations and entanglement can be generated by phonon-qubit hybrid system.
arXiv Detail & Related papers (2020-11-26T17:14:58Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Quantum relaxation in a system of harmonic oscillators with
time-dependent coupling [0.0]
We analyze the relaxation of nonequilibrium initial distributions for a system of coupled one-dimensional harmonic oscillators.
We show that in general the system studied here tends to equilibrium, but the relaxation can be retarded depending on the values of the parameters.
arXiv Detail & Related papers (2020-07-06T12:57:18Z) - Fluctuation-Dissipation Relation from the Nonequilibrium Dynamics of a
Nonlinear Open Quantum System [0.0]
We show that equilibration implies an FDR for the anharmonic oscillator.
We show that the net energy exchange vanishes after relaxation in the open system dynamics.
arXiv Detail & Related papers (2020-02-18T16:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.