論文の概要: IGL-DT: Iterative Global-Local Feature Learning with Dual-Teacher Semantic Segmentation Framework under Limited Annotation Scheme
- arxiv url: http://arxiv.org/abs/2504.09797v1
- Date: Mon, 14 Apr 2025 01:51:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:54:53.769476
- Title: IGL-DT: Iterative Global-Local Feature Learning with Dual-Teacher Semantic Segmentation Framework under Limited Annotation Scheme
- Title(参考訳): IGL-DT:限定アノテーションスキーム下でのDual-Teacher Semantic Segmentation Frameworkを用いた反復的グローバルローカル特徴学習
- Authors: Dinh Dai Quan Tran, Hoang-Thien Nguyen. Thanh-Huy Nguyen, Gia-Van To, Tien-Huy Nguyen, Quan Nguyen,
- Abstract要約: Semi-Supervised Semantic (SSSS)は、ラベル付き画像の小さなセットとラベルなしデータのより大きなプールを活用することにより、セグメンテーションの精度を向上させることを目的としている。
IGL-DTという2つの教師戦略を取り入れた新しい三分岐半教師付きセグメンテーションフレームワークを提案する。
本手法では,Global Context Learning と ResUnet を通した高レベルの意味指導にSwinUnet を用い,局所的学習を通じて詳細な特徴改善を行う。
- 参考スコア(独自算出の注目度): 3.440487702095727
- License:
- Abstract: Semi-Supervised Semantic Segmentation (SSSS) aims to improve segmentation accuracy by leveraging a small set of labeled images alongside a larger pool of unlabeled data. Recent advances primarily focus on pseudo-labeling, consistency regularization, and co-training strategies. However, existing methods struggle to balance global semantic representation with fine-grained local feature extraction. To address this challenge, we propose a novel tri-branch semi-supervised segmentation framework incorporating a dual-teacher strategy, named IGL-DT. Our approach employs SwinUnet for high-level semantic guidance through Global Context Learning and ResUnet for detailed feature refinement via Local Regional Learning. Additionally, a Discrepancy Learning mechanism mitigates over-reliance on a single teacher, promoting adaptive feature learning. Extensive experiments on benchmark datasets demonstrate that our method outperforms state-of-the-art approaches, achieving superior segmentation performance across various data regimes.
- Abstract(参考訳): 半スーパービジョンセマンティックセグメンテーション(SSSS)は、ラベル付き画像の小さなセットとラベルなしデータのより大きなプールを活用することにより、セグメンテーションの精度を向上させることを目的としている。
最近の進歩は、主に擬似ラベル、一貫性の正則化、コトレーニング戦略に焦点を当てている。
しかし、既存の手法では、グローバルな意味表現ときめ細かい局所的特徴抽出のバランスをとるのに苦労している。
この課題に対処するために,IGL-DT という2つの教師戦略を取り入れた新しい三分岐半教師付きセグメンテーションフレームワークを提案する。
本手法では,Global Context Learning と ResUnet を通した高レベルの意味指導にSwinUnet を用い,局所的学習を通じて詳細な特徴改善を行う。
さらに、離散学習機構は、単一教師に対する過度信頼を軽減し、適応的特徴学習を促進する。
ベンチマークデータセットの大規模な実験により、我々の手法は最先端の手法よりも優れており、様々なデータレシエーションにおいてより優れたセグメンテーション性能を実現していることが示された。
関連論文リスト
- Cross-Domain Semantic Segmentation with Large Language Model-Assisted Descriptor Generation [0.0]
LangSegはコンテキストに敏感できめ細かいサブクラス記述子を利用する新しいセマンティックセマンティックセマンティクス手法である。
我々はLangSegをADE20KとCOCO-Stuffという2つの挑戦的なデータセットで評価し、最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2025-01-27T20:02:12Z) - DIAL: Dense Image-text ALignment for Weakly Supervised Semantic Segmentation [8.422110274212503]
弱教師付きセマンティックセグメンテーションアプローチは通常、初期シード生成にクラスアクティベーションマップ(CAM)に依存する。
DALNetは、テキストの埋め込みを利用して、さまざまなレベルの粒度のオブジェクトの包括的理解と正確な位置決めを強化する。
このアプローチは特に、シングルステージの手法として、より効率的なエンドツーエンドプロセスを可能にします。
論文 参考訳(メタデータ) (2024-09-24T06:51:49Z) - Few-Shot Learning for Annotation-Efficient Nucleus Instance Segmentation [50.407071700154674]
少数ショット学習(FSL)の観点から、アノテーション効率の良い核インスタンスセグメンテーションを定式化することを提案する。
我々の研究は、計算病理学の隆盛とともに、多くの完全注釈付きデータセットが一般に公開されていることに動機づけられた。
いくつかの公開データセットに対する大規模な実験は、SGFSISが他のアノテーション効率のよい学習ベースラインより優れていることを示している。
論文 参考訳(メタデータ) (2024-02-26T03:49:18Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) は、与えられたクエリに意味のあるターゲットインスタンスを、他のモダリティから検索することを目的としている。
既存のアプローチは通常、2つの大きな制限に悩まされる。
論文 参考訳(メタデータ) (2023-01-17T12:42:58Z) - Revisiting Deep Semi-supervised Learning: An Empirical Distribution
Alignment Framework and Its Generalization Bound [97.93945601881407]
経験分布アライメントによる半教師あり学習(SLEDA)と呼ばれる深層半教師あり学習フレームワークを提案する。
ラベル付きデータに対するトレーニング誤差を最小化することにより,半教師付き学習の一般化誤差を効果的にバウンドできることを示す。
新しい枠組みと理論的境界に基づいて、Augmented Distribution Alignment Network(ADA-Net)と呼ばれるシンプルで効果的な深層半教師付き学習手法を開発した。
論文 参考訳(メタデータ) (2022-03-13T11:59:52Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Semi-supervised Domain Adaptation for Semantic Segmentation [3.946367634483361]
セマンティックセグメンテーションにおけるクロスドメインとイントラドメインのギャップに対処する2段階の半教師付き二重ドメイン適応(SSDDA)手法を提案する。
提案手法は,2つの共通合成-実合成セマンティックセグメンテーションベンチマークにおいて,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-10-20T16:13:00Z) - Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with
Self-Supervised Depth Estimation [94.16816278191477]
本稿では,セミアダプティブなセマンティックセマンティックセマンティックセグメンテーションのためのフレームワークを提案する。
ラベルのない画像シーケンスでのみ訓練された自己教師付き単眼深度推定によって強化される。
提案したモデルをCityscapesデータセット上で検証する。
論文 参考訳(メタデータ) (2021-08-28T01:33:38Z) - Semi-supervised Domain Adaptation based on Dual-level Domain Mixing for
Semantic Segmentation [34.790169990156684]
私たちは、少数のラベル付きターゲットデータと大量のラベル付きソースデータが利用可能である半監視ドメイン適応(SSDA)のより実用的な設定に焦点を当てています。
領域レベルとサンプルレベルのドメインギャップを低減する2種類のデータミキシング手法を提案する。
総合的視点と部分的視点から2段階の混合データに基づいて,2つの相補的ドメイン混合教師を得ることができる。
論文 参考訳(メタデータ) (2021-03-08T12:33:17Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
このタスクの重要な課題は、ソースとターゲットドメイン間のデータ分散の相違を緩和する方法である。
本稿では,グローバルな視点とローカルな視点の両方から分布の整合性を促進できるASS(Alleviating Semantic-level Shift)を提案する。
GTA5、Cityscapes、Synthia、Cityscapesの2つのドメイン適応タスクにASSを適用します。
論文 参考訳(メタデータ) (2020-04-02T03:25:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。