LangPert: Detecting and Handling Task-level Perturbations for Robust Object Rearrangement
- URL: http://arxiv.org/abs/2504.09893v1
- Date: Mon, 14 Apr 2025 05:39:15 GMT
- Title: LangPert: Detecting and Handling Task-level Perturbations for Robust Object Rearrangement
- Authors: Xu Yin, Min-Sung Yoon, Yuchi Huo, Kang Zhang, Sung-Eui Yoon,
- Abstract summary: LangPert is a language-based framework designed to detect and mitigate Task-Level Perturbations (TLP)<n>LangPert integrates a Visual Language Model (VLM) to comprehensively monitor policy's skill execution and environmental TLP.<n>Our experimental results demonstrate that LangPert handles diverse TLP situations more effectively than baseline methods.
- Score: 21.236557779562794
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Task execution for object rearrangement could be challenged by Task-Level Perturbations (TLP), i.e., unexpected object additions, removals, and displacements that can disrupt underlying visual policies and fundamentally compromise task feasibility and progress. To address these challenges, we present LangPert, a language-based framework designed to detect and mitigate TLP situations in tabletop rearrangement tasks. LangPert integrates a Visual Language Model (VLM) to comprehensively monitor policy's skill execution and environmental TLP, while leveraging the Hierarchical Chain-of-Thought (HCoT) reasoning mechanism to enhance the Large Language Model (LLM)'s contextual understanding and generate adaptive, corrective skill-execution plans. Our experimental results demonstrate that LangPert handles diverse TLP situations more effectively than baseline methods, achieving higher task completion rates, improved execution efficiency, and potential generalization to unseen scenarios.
Related papers
- Learning Task Representations from In-Context Learning [73.72066284711462]
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning.
We introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads.
We show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
arXiv Detail & Related papers (2025-02-08T00:16:44Z) - Large Language Models as Common-Sense Heuristics [0.9093413254392775]
Large Language Models (LLMs) possess parametrised knowledge across a wide range of topics, enabling them to leverage the natural language descriptions of planning tasks in their solutions.<n>We introduce a novel planning method, which leverages the parametrised knowledge of LLMs by using their output as a for Hill-Climbing Search.<n>Our method outperforms the task success rate of similar systems within a common household environment by 22 percentage points, with consistently executable plans.
arXiv Detail & Related papers (2025-01-31T00:26:38Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
Large Language Models (LLMs) demonstrate strong abilities in common-sense reasoning and interactive decision-making.
Recent techniques have sought to structure LLM outputs using control flow and other code-adjacent techniques to improve planning performance.
We propose REPL-Plan, an LLM planning approach that is fully code-expressive and dynamic.
arXiv Detail & Related papers (2024-11-21T04:23:17Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
We introduce CodePlan, a framework that generates and follows textcode-form plans -- pseudocode that outlines high-level, structured reasoning processes.
CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks.
It achieves a 25.1% relative improvement compared with directly generating responses.
arXiv Detail & Related papers (2024-09-19T04:13:58Z) - Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation [49.43094200366251]
We propose a novel approach for few-shot adaptation to unseen tasks that exploits the semantic understanding of task decomposition.
Our method, Policy Adaptation via Language Optimization (PALO), combines a handful of demonstrations of a task with proposed language decompositions.
We find that PALO is able of consistently complete long-horizon, multi-tier tasks in the real world, outperforming state of the art pre-trained generalist policies.
arXiv Detail & Related papers (2024-08-29T03:03:35Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
This work lays the foundations for improving planning capabilities of large language models (LLMs)
We construct a comprehensive benchmark suite encompassing both classical planning benchmarks and natural language scenarios.
We investigate the use of many-shot in-context learning to enhance LLM planning, exploring the relationship between increased context length and improved planning performance.
arXiv Detail & Related papers (2024-06-18T22:57:06Z) - Consolidating Trees of Robotic Plans Generated Using Large Language
Models to Improve Reliability [6.4111574364474215]
The inherent probabilistic nature of Large Language Models (LLMs) introduces an element of unpredictability.
This paper introduces an innovative approach aims to generate correct and optimal robotic task plans for diverse real-world demands and scenarios.
arXiv Detail & Related papers (2024-01-15T18:01:59Z) - ISR-LLM: Iterative Self-Refined Large Language Model for Long-Horizon
Sequential Task Planning [7.701407633867452]
Large Language Models (LLMs) offer the potential to enhance the generalizability as task-agnostic planners.
We introduce ISR-LLM, a novel framework that improves LLM-based planning through an iterative self-refinement process.
We show that ISR-LLM is able to achieve markedly higher success rates in task accomplishments compared to state-of-the-art LLM-based planners.
arXiv Detail & Related papers (2023-08-26T01:31:35Z) - AutoTAMP: Autoregressive Task and Motion Planning with LLMs as Translators and Checkers [20.857692296678632]
For effective human-robot interaction, robots need to understand, plan, and execute complex, long-horizon tasks.
Recent advances in large language models have shown promise for translating natural language into robot action sequences.
We show that our approach outperforms several methods using LLMs as planners in complex task domains.
arXiv Detail & Related papers (2023-06-10T21:58:29Z) - Plan, Eliminate, and Track -- Language Models are Good Teachers for
Embodied Agents [99.17668730578586]
Pre-trained large language models (LLMs) capture procedural knowledge about the world.
Plan, Eliminate, and Track (PET) framework translates a task description into a list of high-level sub-tasks.
PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.
arXiv Detail & Related papers (2023-05-03T20:11:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.