Digital Staining with Knowledge Distillation: A Unified Framework for Unpaired and Paired-But-Misaligned Data
- URL: http://arxiv.org/abs/2504.09899v1
- Date: Mon, 14 Apr 2025 05:48:05 GMT
- Title: Digital Staining with Knowledge Distillation: A Unified Framework for Unpaired and Paired-But-Misaligned Data
- Authors: Ziwang Xu, Lanqing Guo, Satoshi Tsutsui, Shuyan Zhang, Alex C. Kot, Bihan Wen,
- Abstract summary: Recent advances in deep learning have enabled digital staining through supervised model training.<n>We propose a novel unsupervised deep learning framework for digital cell staining that reduces the need for extensive paired data using knowledge distillation.<n>Experiment results on our dataset demonstrate that our proposed unsupervised deep staining method can generate stained images with more accurate positions and shapes of the cell targets in both settings.
- Score: 40.700143367661965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Staining is essential in cell imaging and medical diagnostics but poses significant challenges, including high cost, time consumption, labor intensity, and irreversible tissue alterations. Recent advances in deep learning have enabled digital staining through supervised model training. However, collecting large-scale, perfectly aligned pairs of stained and unstained images remains difficult. In this work, we propose a novel unsupervised deep learning framework for digital cell staining that reduces the need for extensive paired data using knowledge distillation. We explore two training schemes: (1) unpaired and (2) paired-but-misaligned settings. For the unpaired case, we introduce a two-stage pipeline, comprising light enhancement followed by colorization, as a teacher model. Subsequently, we obtain a student staining generator through knowledge distillation with hybrid non-reference losses. To leverage the pixel-wise information between adjacent sections, we further extend to the paired-but-misaligned setting, adding the Learning to Align module to utilize pixel-level information. Experiment results on our dataset demonstrate that our proposed unsupervised deep staining method can generate stained images with more accurate positions and shapes of the cell targets in both settings. Compared with competing methods, our method achieves improved results both qualitatively and quantitatively (e.g., NIQE and PSNR).We applied our digital staining method to the White Blood Cell (WBC) dataset, investigating its potential for medical applications.
Related papers
- Unsupervised Deep Digital Staining For Microscopic Cell Images Via
Knowledge Distillation [46.006296303296544]
It is difficult to obtain large-scale stained/unstained cell image pairs in practice.
We propose a novel unsupervised deep learning framework for the digital staining of cell images.
We show that the proposed unsupervised deep staining method can generate stained images with more accurate positions and shapes of the cell targets.
arXiv Detail & Related papers (2023-03-03T16:26:38Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
In-vitro tests are an alternative to animal testing for the toxicity of medical devices.
Human fatigue plays a role in error making, making the use of deep learning appealing.
We propose Seamless Iterative Semi-Supervised correction of Imperfect labels (SISSI)
Our method successfully provides an adaptive early learning correction technique for object detection.
arXiv Detail & Related papers (2022-08-05T18:52:20Z) - Metadata-enhanced contrastive learning from retinal optical coherence tomography images [7.932410831191909]
We extend conventional contrastive frameworks with a novel metadata-enhanced strategy.
Our approach employs widely available patient metadata to approximate the true set of inter-image contrastive relationships.
Our approach outperforms both standard contrastive methods and a retinal image foundation model in five out of six image-level downstream tasks.
arXiv Detail & Related papers (2022-08-04T08:53:15Z) - Stain based contrastive co-training for histopathological image analysis [61.87751502143719]
We propose a novel semi-supervised learning approach for classification of histovolution images.
We employ strong supervision with patch-level annotations combined with a novel co-training loss to create a semi-supervised learning framework.
We evaluate our approach in clear cell renal cell and prostate carcinomas, and demonstrate improvement over state-of-the-art semi-supervised learning methods.
arXiv Detail & Related papers (2022-06-24T22:25:31Z) - Exploiting generative self-supervised learning for the assessment of
biological images with lack of annotations: a COVID-19 case-study [0.41998444721319217]
GAN-DL is a Discriminator Learner based on the StyleGAN2 architecture.
We show that our technique can be exploited not only for classification tasks, but also to effectively derive a dose response curve.
arXiv Detail & Related papers (2021-07-16T08:36:34Z) - Positional Contrastive Learning for Volumetric Medical Image
Segmentation [13.086140606803408]
We propose a novel positional contrastive learning framework to generate contrastive data pairs.
The proposed PCL method can substantially improve the segmentation performance compared to existing methods in both semi-supervised setting and transfer learning setting.
arXiv Detail & Related papers (2021-06-16T22:15:28Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
We investigate the intrinsic degradation and relight the low-light image while refining the details and color in two steps.
Inspired by the color image formulation, we first estimate the degradation from low-light inputs to simulate the distortion of environment illumination color, and then refine the content to recover the loss of diffuse illumination color.
Our proposed method has surpassed the SOTA by 0.95dB in PSNR on LOL1000 dataset and 3.18% in mAP on ExDark dataset.
arXiv Detail & Related papers (2021-03-19T04:00:27Z) - Bridging the gap between Natural and Medical Images through Deep
Colorization [15.585095421320922]
Transfer learning from natural image collections is a standard practice that attempts to tackle shape, texture and color discrepancies.
In this work, we propose to disentangle those challenges and design a dedicated network module that focuses on color adaptation.
We combine learning from scratch of the color module with transfer learning of different classification backbones, obtaining an end-to-end, easy-to-train architecture for diagnostic image recognition.
arXiv Detail & Related papers (2020-05-21T12:03:14Z) - Semi-Supervised StyleGAN for Disentanglement Learning [79.01988132442064]
Current disentanglement methods face several inherent limitations.
We design new architectures and loss functions based on StyleGAN for semi-supervised high-resolution disentanglement learning.
arXiv Detail & Related papers (2020-03-06T22:54:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.