論文の概要: Small Object Detection with YOLO: A Performance Analysis Across Model Versions and Hardware
- arxiv url: http://arxiv.org/abs/2504.09900v1
- Date: Mon, 14 Apr 2025 05:49:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:51:45.669772
- Title: Small Object Detection with YOLO: A Performance Analysis Across Model Versions and Hardware
- Title(参考訳): YOLOによる小型物体検出:モデルバージョンとハードウェア間の性能解析
- Authors: Muhammad Fasih Tariq, Muhammad Azeem Javed,
- Abstract要約: 本稿では,ONNX や OpenVINO などの人気ライブラリを用いて,Intel と CPU の高速化と検出精度について検討する。
画像内のオブジェクトサイズに対するこれらのYOLOモデルの感度を分析し、画像の総面積の1%、2.5%、5%を占めるオブジェクトを検出する際の性能を調べる。
- 参考スコア(独自算出の注目度): 2.07180164747172
- License:
- Abstract: This paper provides an extensive evaluation of YOLO object detection models (v5, v8, v9, v10, v11) by com- paring their performance across various hardware platforms and optimization libraries. Our study investigates inference speed and detection accuracy on Intel and AMD CPUs using popular libraries such as ONNX and OpenVINO, as well as on GPUs through TensorRT and other GPU-optimized frameworks. Furthermore, we analyze the sensitivity of these YOLO models to object size within the image, examining performance when detecting objects that occupy 1%, 2.5%, and 5% of the total area of the image. By identifying the trade-offs in efficiency, accuracy, and object size adaptability, this paper offers insights for optimal model selection based on specific hardware constraints and detection requirements, aiding practitioners in deploying YOLO models effectively for real-world applications.
- Abstract(参考訳): 本稿では, YOLOオブジェクト検出モデル (v5, v8, v9, v10, v11) を, 様々なハードウェアプラットフォームおよび最適化ライブラリ間で解析することで, 広範囲に評価する。
本稿では,ONNXやOpenVINOなどの人気ライブラリを用いたIntelおよびAMD CPUの推論速度と検出精度,およびTensorRTなどのGPU最適化フレームワークを用いたGPUについて検討した。
さらに、画像内のオブジェクトサイズに対するこれらのYOLOモデルの感度を分析し、画像の総面積の1%、2.5%、5%を占めるオブジェクトを検出する際の性能を調べた。
本報告では,効率性,精度,オブジェクトサイズ適応性のトレードオフを同定することにより,特定のハードウェア制約や検出要件に基づく最適モデル選択の洞察を提供するとともに,現実のアプリケーションにYOLOモデルを効果的にデプロイする実践者を支援する。
関連論文リスト
- YOLOv12: A Breakdown of the Key Architectural Features [0.5639904484784127]
YOLOv12は、単一ステージのリアルタイム物体検出において重要な進歩である。
最適化されたバックボーン(R-ELAN)、分離可能な7x7の畳み込み、およびFlashAttention駆動のエリアベースアテンションが組み込まれている。
レイテンシに敏感なアプリケーションと高精度なアプリケーションの両方にスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2025-02-20T17:08:43Z) - YOLOv11: An Overview of the Key Architectural Enhancements [0.5639904484784127]
本稿では、オブジェクト検出、インスタンスセグメンテーション、ポーズ推定、オブジェクト指向オブジェクト検出(OBB)など、さまざまなコンピュータビジョンタスクにまたがるYOLOv11の拡張機能について検討する。
本稿では,パラメータ数と精度のトレードオフに着目し,平均精度(mAP)と計算効率の両面からモデルの性能改善を概観する。
我々の研究は、オブジェクト検出の広い視野におけるYOLOv11の位置と、リアルタイムコンピュータビジョンアプリケーションに対する潜在的な影響についての洞察を提供する。
論文 参考訳(メタデータ) (2024-10-23T09:55:22Z) - YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time Vision [0.6662800021628277]
本稿では、YOLOv5, YOLOv8, YOLOv10に着目し、YOLO(You Only Look Once)オブジェクト検出アルゴリズムの進化に焦点を当てた。
これらのバージョンにまたがるエッジデプロイメントのアーキテクチャの進歩、パフォーマンスの改善、適合性を分析します。
論文 参考訳(メタデータ) (2024-07-03T10:40:20Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
リアルタイムオブジェクト検出の分野では,YOLOが主流のパラダイムとして浮上している。
非最大抑圧(NMS)による処理後ハマーによるYOLOのエンドツーエンドデプロイメントへの依存。
YOLOの総合的効率-精度駆動型モデル設計戦略を紹介する。
論文 参考訳(メタデータ) (2024-05-23T11:44:29Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
オープン語彙検出機能でYOLOを強化する革新的なアプローチであるYOLO-Worldを紹介する。
提案手法は,ゼロショット方式で広範囲の物体を高効率で検出する。
YOLO-WorldはV100上で52.0 FPSの35.4 APを達成した。
論文 参考訳(メタデータ) (2024-01-30T18:59:38Z) - From Blurry to Brilliant Detection: YOLOv5-Based Aerial Object Detection
with Super Resolution [4.107182710549721]
超解像度と適応型軽量YOLOv5アーキテクチャを組み合わせた革新的なアプローチを提案する。
実験により,小型で密集した物体の検出において,モデルの性能が優れていることを示した。
論文 参考訳(メタデータ) (2024-01-26T05:50:58Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection [63.36722419180875]
YOLO-MSと呼ばれる効率的かつ高性能な物体検出器を提供する。
私たちは、他の大規模なデータセットに頼ることなく、MS COCOデータセット上でYOLO-MSをスクラッチからトレーニングします。
私たちの作業は、他のYOLOモデルのプラグイン・アンド・プレイモジュールとしても機能します。
論文 参考訳(メタデータ) (2023-08-10T10:12:27Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - Evaluation of YOLO Models with Sliced Inference for Small Object
Detection [0.0]
この研究は、小さなオブジェクト検出のためにYOLOv5とYOLOXモデルをベンチマークすることを目的としている。
スライスされた微調整とスライスされた推論が組み合わさって全てのモデルに大幅な改善をもたらした。
論文 参考訳(メタデータ) (2022-03-09T15:24:30Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
本稿では, ボクセルをベースとした2つの3次元物体検出手法について述べる。
実験の結果,これらの手法は入力点雲が遠距離にあるため,遠距離の小さな物体を検出できないことが確認できた。
この結果から,既存手法の計算のかなりの部分は,検出に寄与しないシーンの位置に着目していることが示唆された。
論文 参考訳(メタデータ) (2021-05-21T12:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。