Small Object Detection with YOLO: A Performance Analysis Across Model Versions and Hardware
- URL: http://arxiv.org/abs/2504.09900v1
- Date: Mon, 14 Apr 2025 05:49:31 GMT
- Title: Small Object Detection with YOLO: A Performance Analysis Across Model Versions and Hardware
- Authors: Muhammad Fasih Tariq, Muhammad Azeem Javed,
- Abstract summary: This paper investigates speed and detection accuracy on Intel and CPUs using popular libraries such as ONNX and OpenVINO.<n>We analyze the sensitivity of these YOLO models to object size within the image, examining performance when detecting objects that occupy 1%, 2.5%, and 5% of the total area of the image.
- Score: 2.07180164747172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper provides an extensive evaluation of YOLO object detection models (v5, v8, v9, v10, v11) by com- paring their performance across various hardware platforms and optimization libraries. Our study investigates inference speed and detection accuracy on Intel and AMD CPUs using popular libraries such as ONNX and OpenVINO, as well as on GPUs through TensorRT and other GPU-optimized frameworks. Furthermore, we analyze the sensitivity of these YOLO models to object size within the image, examining performance when detecting objects that occupy 1%, 2.5%, and 5% of the total area of the image. By identifying the trade-offs in efficiency, accuracy, and object size adaptability, this paper offers insights for optimal model selection based on specific hardware constraints and detection requirements, aiding practitioners in deploying YOLO models effectively for real-world applications.
Related papers
- YOLOv12: A Breakdown of the Key Architectural Features [0.5639904484784127]
YOLOv12 is a significant advancement in single-stage, real-time object detection.<n>It incorporates an optimised backbone (R-ELAN), 7x7 separable convolutions, and FlashAttention-driven area-based attention.<n>It offers scalable solutions for both latency-sensitive and high-accuracy applications.
arXiv Detail & Related papers (2025-02-20T17:08:43Z) - YOLO Evolution: A Comprehensive Benchmark and Architectural Review of YOLOv12, YOLO11, and Their Previous Versions [0.0]
This study represents the first comprehensive experimental evaluation of YOLOv3 to the latest version, YOLOv12.<n>The challenges considered include varying object sizes, diverse aspect ratios, and small-sized objects of a single class.<n>Our analysis highlights the distinctive strengths and limitations of each YOLO version.
arXiv Detail & Related papers (2024-10-31T20:45:00Z) - YOLOv11: An Overview of the Key Architectural Enhancements [0.5639904484784127]
The paper explores YOLOv11's expanded capabilities across various computer vision tasks, including object detection, instance segmentation, pose estimation, and oriented object detection (OBB)
We review the model's performance improvements in terms of mean Average Precision (mAP) and computational efficiency compared to its predecessors, with a focus on the trade-off between parameter count and accuracy.
Our research provides insights into YOLOv11's position within the broader landscape of object detection and its potential impact on real-time computer vision applications.
arXiv Detail & Related papers (2024-10-23T09:55:22Z) - YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time Vision [0.6662800021628277]
This paper focuses on the evolution of the YOLO (You Only Look Once) object detection algorithm, focusing on YOLOv5, YOLOv8, and YOLOv10.
We analyze the architectural advancements, performance improvements, and suitability for edge deployment across these versions.
arXiv Detail & Related papers (2024-07-03T10:40:20Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
YOLOs have emerged as the predominant paradigm in the field of real-time object detection.
The reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs.
We introduce the holistic efficiency-accuracy driven model design strategy for YOLOs.
arXiv Detail & Related papers (2024-05-23T11:44:29Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
We introduce YOLO-World, an innovative approach that enhances YOLO with open-vocabulary detection capabilities.
Our method excels in detecting a wide range of objects in a zero-shot manner with high efficiency.
YOLO-World achieves 35.4 AP with 52.0 FPS on V100, which outperforms many state-of-the-art methods in terms of both accuracy and speed.
arXiv Detail & Related papers (2024-01-30T18:59:38Z) - From Blurry to Brilliant Detection: YOLOv5-Based Aerial Object Detection
with Super Resolution [4.107182710549721]
We present an innovative approach that combines super-resolution and an adapted lightweight YOLOv5 architecture.
Our experimental results demonstrate the model's superior performance in detecting small and densely clustered objects.
arXiv Detail & Related papers (2024-01-26T05:50:58Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection [63.36722419180875]
We provide an efficient and performant object detector, termed YOLO-MS.<n>We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.<n>Our work can also serve as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
Two popular voxel-based 3D object detection methods are studied in this paper.
Our experiments show that these methods mostly fail to detect distant small objects due to the sparsity of the input point clouds at large distances.
Our findings suggest that a considerable part of the computations of existing methods is focused on locations of the scene that do not contribute with successful detection.
arXiv Detail & Related papers (2021-05-21T12:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.