Learning to Erase Private Knowledge from Multi-Documents for Retrieval-Augmented Large Language Models
- URL: http://arxiv.org/abs/2504.09910v1
- Date: Mon, 14 Apr 2025 06:10:31 GMT
- Title: Learning to Erase Private Knowledge from Multi-Documents for Retrieval-Augmented Large Language Models
- Authors: Yujing Wang, Hainan Zhang, Liang Pang, Yongxin Tong, Binghui Guo, Hongwei Zheng, Zhiming Zheng,
- Abstract summary: This paper introduces the privacy erasure task for Retrieval-Augmented Generation (RAG)<n>We first construct a global knowledge graph to identify potential knowledge across documents, aiming to defend against de-anonymization attacks.<n>Experiments on four QA datasets demonstrate that Eraser4RAG superior erase performance than GPT-4o.
- Score: 30.143809176910185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) is a promising technique for applying LLMs to proprietary domains. However, retrieved documents may contain sensitive knowledge, posing risks of privacy leakage in generative results. Thus, effectively erasing private information from retrieved documents is a key challenge for RAG. Unlike traditional text anonymization, RAG should consider: (1) the inherent multi-document reasoning may face de-anonymization attacks; (2) private knowledge varies by scenarios, so users should be allowed to customize which information to erase; (3) preserving sufficient publicly available knowledge for generation tasks. This paper introduces the privacy erasure task for RAG and proposes Eraser4RAG, a private knowledge eraser which effectively removes user-defined private knowledge from documents while preserving sufficient public knowledge for generation. Specifically, we first construct a global knowledge graph to identify potential knowledge across documents, aiming to defend against de-anonymization attacks. Then we randomly split it into private and public sub-graphs, and fine-tune Flan-T5 to rewrite the retrieved documents excluding private triples. Finally, PPO algorithm optimizes the rewriting model to minimize private triples and maximize public triples retention. Experiments on four QA datasets demonstrate that Eraser4RAG achieves superior erase performance than GPT-4o.
Related papers
- Fine-Grained Privacy Extraction from Retrieval-Augmented Generation Systems via Knowledge Asymmetry Exploitation [15.985529058573912]
Retrieval-augmented generation (RAG) systems enhance large language models (LLMs) by integrating external knowledge bases.<n>Existing privacy attacks on RAG systems can trigger data leakage but often fail to accurately isolate knowledge-base-derived sentences within mixed responses.<n>This paper presents a novel black-box attack framework that exploits knowledge asymmetry between RAG and standard LLMs to achieve fine-grained privacy extraction.
arXiv Detail & Related papers (2025-07-31T03:50:16Z) - Preserving Privacy Without Compromising Accuracy: Machine Unlearning for Handwritten Text Recognition [12.228611784356412]
Handwritten Text Recognition (HTR) is essential for document analysis and digitization.<n>Legislation like the right to be forgotten'' underscores the necessity for methods that can expunge sensitive information from trained models.<n>We introduce a novel two-stage unlearning strategy for a multi-head transformer-based HTR model, integrating pruning and random labeling.
arXiv Detail & Related papers (2025-04-11T15:21:12Z) - RAG with Differential Privacy [3.009591302286514]
Retrieval-Augmented Generation (RAG) has emerged as the dominant technique to provide large language models with fresh and relevant context.<n>The integration of external documents into the generation process raises significant privacy concerns.<n>This paper explores a practical solution to this problem suitable to general knowledge extraction from personal data.
arXiv Detail & Related papers (2024-12-26T17:34:26Z) - RAG-Thief: Scalable Extraction of Private Data from Retrieval-Augmented Generation Applications with Agent-based Attacks [18.576435409729655]
We propose an agent-based automated privacy attack called RAG-Thief.
It can extract a scalable amount of private data from the private database used in RAG applications.
Our findings highlight the privacy vulnerabilities in current RAG applications and underscore the pressing need for stronger safeguards.
arXiv Detail & Related papers (2024-11-21T13:18:03Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
Text anonymization is crucial for sharing sensitive data while maintaining privacy.
Existing techniques face the emerging challenges of re-identification attack ability of Large Language Models.
This paper proposes a framework composed of three LLM-based components -- a privacy evaluator, a utility evaluator, and an optimization component.
arXiv Detail & Related papers (2024-07-16T14:28:56Z) - MUSE: Machine Unlearning Six-Way Evaluation for Language Models [109.76505405962783]
Language models (LMs) are trained on vast amounts of text data, which may include private and copyrighted content.
We propose MUSE, a comprehensive machine unlearning evaluation benchmark.
We benchmark how effectively eight popular unlearning algorithms can unlearn Harry Potter books and news articles.
arXiv Detail & Related papers (2024-07-08T23:47:29Z) - Machine Unlearning for Document Classification [14.71726430657162]
A novel approach, known as machine unlearning, has emerged to make AI models forget about a particular class of data.
This work represents a pioneering step towards the development of machine unlearning methods aimed at addressing privacy concerns in document analysis applications.
arXiv Detail & Related papers (2024-04-29T18:16:13Z) - The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented
Generation (RAG) [56.67603627046346]
Retrieval-augmented generation (RAG) is a powerful technique to facilitate language model with proprietary and private data.
In this work, we conduct empirical studies with novel attack methods, which demonstrate the vulnerability of RAG systems on leaking the private retrieval database.
arXiv Detail & Related papers (2024-02-23T18:35:15Z) - Privacy-Aware Document Visual Question Answering [44.82362488593259]
This work highlights privacy issues in state of the art multi-modal LLM models used for DocVQA.
We propose a large scale DocVQA dataset comprising invoice documents and associated questions and answers.
We demonstrate that non-private models tend to memorise, a behaviour that can lead to exposing private information.
arXiv Detail & Related papers (2023-12-15T06:30:55Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
We show that even the most capable AI models reveal private information in contexts that humans would not, 39% and 57% of the time, respectively.
Our work underscores the immediate need to explore novel inference-time privacy-preserving approaches, based on reasoning and theory of mind.
arXiv Detail & Related papers (2023-10-27T04:15:30Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
We present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators.
We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer.
arXiv Detail & Related papers (2022-09-21T01:30:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.